Advertisement

Hybridization of the Univariate Marginal Distribution Algorithm with Simulated Annealing for Parametric Parabola Detection

  • S. Ivvan Valdez
  • Susana Espinoza-Perez
  • Fernando Cervantes-Sanchez
  • Ivan Cruz-AcevesEmail author
Chapter
  • 233 Downloads

Abstract

This chapter presents a new hybrid optimization method based on the univariate marginal distribution algorithm for a continuous domain, and the heuristic of simulated annealing for the parabola detection problem. The hybrid proposed method is applied to the DRIVE database of retinal fundus images to approximate the retinal vessels as a parabolic shape. The hybrid method is applied separately using two different objective functions. Firstly, the objective function only considers the superposition of pixels between the target pixels in the input image and the virtual parabola; secondly, the objective function implements a weighted restriction on the pixels close to the parabola vertex. Both objective functions in the hybrid method obtain suitable results to approximate a parabolic form on the retinal vessels present in the retinal images. The experiments show that the parabola detection results obtained from the proposed method are more robust than those obtained by the comparative method. Additionally, the average execution time achieved by the proposed hybrid method (1.57 s) is lower than the computational time obtained by the comparative method on the database of 20 retinal images, which is of interest to computer-aided diagnosis in clinical practice.

Keywords

Estimation of distribution algorithms Hough transform Hybrid optimization Image analysis Parabola detection Simulated annealing 

Notes

Acknowledgements

This research was supported by the National Council of Science and Technology of México under the project: Cátedras-CONACYT 3150-3097.

References

  1. 1.
    D. Ballard, Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)CrossRefGoogle Scholar
  2. 2.
    J. Illingworth, J. Kittler, A survey of the Hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988)CrossRefGoogle Scholar
  3. 3.
    V. Leavers, Survey: which Hough transform? Comput. Vis. Graph. Image Process. Image Underst. 58, 250–264 (1993)CrossRefGoogle Scholar
  4. 4.
    R.O. Duda, P.E. Hart, Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  5. 5.
    E. Davies, A modified Hough scheme for general circle location. Pattern Recogn. Lett. 7, 37–43 (1987)CrossRefGoogle Scholar
  6. 6.
    D. Ioannou, W. Huda, A. Laine, Circle recognition through a 2D Hough transform and radius histogramming. Image Vis. Comput. 17, 15–26 (1999)CrossRefGoogle Scholar
  7. 7.
    L. Jiang, Efficient randomized Hough transform for circle detection using novel probability sampling and feature points. Optik 123, 1834–1840 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Yip, P. Tam, D. Leung, Modification of Hough transform for circles and ellipses detection using a 2-dimensional array. Pattern Recogn. 25, 1007–1022 (1992)CrossRefGoogle Scholar
  9. 9.
    F. Oloumi, R. Rangayyan, Detection of the temporal arcade in fundus images of the retina using the Hough transform. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 3585–3588 (2009)Google Scholar
  10. 10.
    F. Oloumi, R. Rangayyan, A.L. Ells, Parabolic modeling of the major temporal arcade in retinal fundus images. IEEE Trans. Instrum. Meas. 61(7), 1825–1838 (2012)CrossRefGoogle Scholar
  11. 11.
    N. Chernov, C. Lesort, Least squares fitting of circles. J. Math. Imaging Vis. 23(3), 239–252 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Chung, Y. Huang, A pruning-and-voting strategy to speed up the detection for lines, circles and ellipses. J. Inf. Sci. Eng. 24(2), 503–520 (2008)MathSciNetGoogle Scholar
  13. 13.
    L. Xu, E. Oja, P. Kultanen, A new curve detection method: randomized Hough transform (RHT). Pattern Recogn. Lett. 11(5), 331–338 (1990)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, Q. Su, Y. Zhu, Fast algorithm for circle detection using randomized Hough transform. Comput. Eng. Appl. 44(22), 62–64 (2008)Google Scholar
  15. 15.
    T. Chen, K. Chung, An efficient randomized algorithm for detecting circles. Comput. Vis. Image Underst. 83(2), 172–191 (2001)CrossRefGoogle Scholar
  16. 16.
    L. Jiang, Fast detection of multi-circle with randomized Hough transform. Optim. Lett. 5(5), 397–400 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Cheng, Y. Guo, Y. Zhang, A novel Hough transform based on eliminating particle swarm optimization and its applications. Pattern Recogn. 42(9), 1959–1969 (2009)CrossRefGoogle Scholar
  18. 18.
    E. Cuevas, D. Oliva, D. Zaldivar, M. Perez-Cisneros, H. Sossa, Circle detection using electro-magnetism optimization. Inf. Sci. 182(1), 40–55 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    V. Ayala-Ramirez, C.H. Garcia-Capulin, A. Perez-Garcia, R.E. Sanchez-Yanez, Circle detection on images using genetic algorithms. Pattern Recogn. Lett. 27(6), 652–657 (2006)CrossRefGoogle Scholar
  20. 20.
    E. Cuevas, V. Osuna-Enciso, F. Wario, D. Zaldivar, M. Perez-Cisneros, Automatic multiple circle detection based on artificial immune systems. Expert Syst. Appl. 39, 713–722 (2012)CrossRefGoogle Scholar
  21. 21.
    E. Cuevas, D. Zaldivar, M. Perez-Cisneros, M. Ramrez-Ortegon, Circle detection using discrete differential evolution optimization. Pattern Anal. Appl. 14(1), 93–107 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. de Jesus Guerrero-Turrubiates, I. Cruz-Aceves, S. Ledesma, J.M. Sierra-Hernandez, J. Velasco, J.G. Avina-Cervantes, M.S. Avila-Garcia, H. Rostro-Gonzalez, R. Rojas-Laguna, Fast parabola detection using estimation of distribution algorithms. Comput. Math. Methods Med. 6494390, 1–13 (2017)CrossRefGoogle Scholar
  23. 23.
    I. Cruz-Aceves, J. Guerrero-Turrubiates, J.M. Sierra-Hernandez, Parametric object detection using estimation of distribution algorithms. Hybrid Intell. Tech. Pattern Anal. Underst. 1, 69–92 (2017)Google Scholar
  24. 24.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi et al., Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Corana, M. Marchesi, C. Martini, S. Ridella, Minimizing multimodal functions of continuous variables with the simulated annealing algorithm. ACM Trans. Math. Softw. 13, 262–280 (1987)MathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Larrañaga, J. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation (Kluwer, Boston, 2002)CrossRefGoogle Scholar
  27. 27.
    M. Hauschild, M. Pelikan, An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011)CrossRefGoogle Scholar
  28. 28.
    I. Cruz-Aceves, A. Hernandez-Aguirre, S. Ivvan-Valdez, On the performance of nature inspired algorithms for the automatic segmentation of coronary arteries using Gaussian matched filters. Appl. Soft Comput. 46, 665–676 (2016)CrossRefGoogle Scholar
  29. 29.
    I. Cruz-Aceves, F. Cervantes-Sanchez, A. Hernandez-Aguirre, R. Perez-Rodriguez, A. Ochoa-Zezzatti, A novel Gaussian matched filter based on entropy minimization for automatic segmentation of coronary angiograms. Comput. Electr. Eng. 53, 263–275 (2016)CrossRefGoogle Scholar
  30. 30.
    L. Lozada-Chang, R. Santana, Univariate marginal distribution algorithm dynamics for a class of parametric functions with unitation constraints. Inf. Sci. 181, 2340–2355 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    J.J. Staal, M.D. Abramo, M. Niemeijer, M.A. Viergever, B. van Ginneken, Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)CrossRefGoogle Scholar
  32. 32.
    M.J. McAuliffe, F.M. Lalonde, D. McGarry, W. Gandler, K. Csaky, B.L. Trus, Medical image processing, analysis & visualization in clinical research, in Proceedings of the IEEE Symposium on Computer-Based Medical Systems (2001), pp. 381–388Google Scholar
  33. 33.
    P. Niedfeldt, R. Beard, Recursive RANSAC: multiple signal estimation with outliers. IFAC Proc. Vol. 46(23), 430–435 (2013). 9th IFAC Symposium on Nonlinear Control SystemsGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • S. Ivvan Valdez
    • 1
  • Susana Espinoza-Perez
    • 2
  • Fernando Cervantes-Sanchez
    • 3
  • Ivan Cruz-Aceves
    • 4
    Email author
  1. 1.División de IngenieríasUniversidad de GuanajuatoSalamancaMexico
  2. 2.Universidad del Papaloapan, Ingeniería en ComputaciónLoma BonitaMexico
  3. 3.Centro de Investigación en Matemáticas (CIMAT)ValencianaMexico
  4. 4.CONACYT, Centro de Investigación en Matemáticas (CIMAT)ValencianaMexico

Personalised recommendations