Image Segmentation Using Metaheuristic-Based Deformable Models

  • B. K. TripathyEmail author
  • T. R. Sooraj
  • R. K. Mohanty


The goal of the segmentation techniques called deformable models is to adapt a curve in order to optimize the overlapping with another image of interest with the actual contour. Some of the problems existing in optimization involve choosing an optimization method, selecting parameters, and initializing the curve. All these problems will be discussed within this chapter, with reference to metaheuristics, and are designed to solve complex optimization and machine learning problems. We discuss image segmentation techniques which depend on active contour models using metaheuristics. Similarly, histological image segmentation techniques are elaborated using a level set approach based upon metaheuristics.


Metaheuristics Active contour models Histological images Level set 


  1. 1.
    C. Aguilera, R. Sanchez, E. Baradit, Detection of knots using x-ray tomographies and deformable contours with simulated annealing. Wood Res 53(2), 57–66 (2008)Google Scholar
  2. 2.
    T. Bäck, H.-P. Schwefel, An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)Google Scholar
  3. 3.
    L. Ballerini, Genetic snakes for medical images segmentation, in Mathematical Modeling and Estimation Techniques in Computer Vision, SPIE, vol. 3457 (1998), pp. 284–295Google Scholar
  4. 4.
    L. Ballerini, An automatic system for the analysis of vascular lesions in retinal images, in Nuclear Science Symposium, 1999. Conference Record. 1999 IEEE, vol. 3 (IEEE, Piscataway, 1999), pp. 1598–1602Google Scholar
  5. 5.
    L. Ballerini, Genetic snakes for color images segmentation, in Applications of Evolutionary Computing (Springer, Berlin, 2001), pp. 268–277Google Scholar
  6. 6.
    N. Barreira, M.G. Penedo, Topological active volumes. EURASIP J. Adv. Signal Process. 2005(13), 1937–1947 (2005)Google Scholar
  7. 7.
    J. Bredno, T.M. Lehmann, K. Spitzer, Automatic parameter setting for balloon models, in Proceedings of SPIE, vol. 3979 (2000), pp. 1185–1194Google Scholar
  8. 8.
    S. Cagnoni, A. Dobrzeniecki, R. Poli, J. Yanch, Genetic algorithm-based interactive segmentation of 3d medical images. Image Vis. Comput. 17(12), 881–895 (1999)Google Scholar
  9. 9.
    T.F. Chan, L.A. Vese, Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)Google Scholar
  10. 10.
    D.-H. Chen, Y.-N. Sun, A self-learning segmentation framework–the Taguchi approach. Comput. Med. Imaging Graph. 24(5), 283–296 (2000)Google Scholar
  11. 11.
    T.R. Crimmins, A complete set of Fourier descriptors for two-dimensional shapes. IEEE Trans. Syst. Man Cybern. 12(6), 848–855 (1982)Google Scholar
  12. 12.
    Z. Delu, Z. Zhiheng, X. Shengli, Vector bundle constraint for particle swarm optimization and its application to active contour modeling. Prog. Nat. Sci. Mater. Int. 17(10), 1220–1225 (2007)Google Scholar
  13. 13.
    L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated Evolution (John Wiley & Sons, Hoboken, 1966)Google Scholar
  14. 14.
    P. Ghosh, M. Mitchell, Segmentation of medical images using a genetic algorithm, in Proceedings of the 8th annual conference on Genetic and evolutionary computation (ACM, New York, 2006), pp. 1171–1178Google Scholar
  15. 15.
    F. Glover, M. Laguna, R. Martí, Scatter search, in Advances in Evolutionary Computing (Springer, Berlin, 2003), pp. 519–537Google Scholar
  16. 16.
    D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989)Google Scholar
  17. 17.
    R.M. Haralick, K. Shanmugam, et al., Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)Google Scholar
  18. 18.
    F. Herrera, M. Lozano, J.L. Verdegay, Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif. Intell. Rev. 12(4), 265–319 (1998)Google Scholar
  19. 19.
    J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT press, Cambridge, 1992)Google Scholar
  20. 20.
    C.-Y. Hsu, C.-Y. Liu, C.-M. Chen, Automatic segmentation of liver pet images. Comput. Med. Imaging Graph. 32(7), 601–610 (2008)Google Scholar
  21. 21.
    A.R. Hussain, Optic nerve head segmentation using genetic active contours, in International Conference on Computer and Communication Engineering, 2008. ICCCE 2008 (IEEE, Piscataway, 2008), pp. 783–787Google Scholar
  22. 22.
    J. Kennedy, R. Eberhart, Particle swarm optimization, in IEEE International Conference on Neural Networks, vol. 4 (1995), pp. 1942–1948Google Scholar
  23. 23.
    R.A. Kirsch, Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4(3), 315–328 (1971)Google Scholar
  24. 24.
    M.E. Leventon, Statistical models in medical image analysis, PhD thesis, Massachusetts Institute of Technology, 2000Google Scholar
  25. 25.
    P. Liatsis, C. Ooi, Tracking moving objects with co-evolutionary snakes, in Video/Image Processing and Multimedia Communications 4th EURASIP-IEEE Region 8 International Symposium on VIPromCom (IEEE, Piscataway, 2002), pp. 325–332Google Scholar
  26. 26.
    L.A. MacEachern, T. Manku, Genetic algorithms for active contour optimization, in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998. ISCAS’98, vol. 4 (IEEE, Piscataway, 1998), pp. 229–232Google Scholar
  27. 27.
    U. Maulik, Medical image segmentation using genetic algorithms. IEEE Trans. Inf. Technol. Biomed. 13(2), 166–173 (2009)Google Scholar
  28. 28.
    P. Mesejo, R. Ugolotti, S. Cagnoni, F. Di Cunto, M. Giacobini, Automatic segmentation of hippocampus in histological images of mouse brains using deformable models and random forest, in 25th International Symposium on Computer-Based Medical Systems (CBMS), 2012 (IEEE, Piscataway, 2012), pp. 1–4Google Scholar
  29. 29.
    E. Mezura-Montes, C.A.C. Coello, Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011)Google Scholar
  30. 30.
    Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer Science & Business Media, Berlin, 2013)Google Scholar
  31. 31.
    P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in Handbook of Metaheuristics (Springer, Berlin, 2003), pp. 105–144Google Scholar
  32. 32.
    K.-J. Mun, H.T. Kang, H.-S. Lee, Y.-S. Yoon, C.-M. Lee, J.H. Park, Active contour model based object contour detection using genetic algorithm with wavelet based image preprocessing. Int. J. Control. Autom. Syst. 2(1), 100–106 (2004)Google Scholar
  33. 33.
    C. Ooi, P. Liatsis, Co-evolutionary-based active contour models in tracking of moving obstacles, in Proceedings of International Conference on Advanced Driver Assistance Systems (2001), pp. 58–62Google Scholar
  34. 34.
    J. Paredis, Coevolutionary computation. Artif. Life 2(4), 355–375 (1995)Google Scholar
  35. 35.
    M.E. Plissiti, D.I. Fotiadis, L.K. Michalis, G.E. Bozios, An automated method for lumen and media-adventitia border detection in a sequence of ivus frames. IEEE Trans. Inf. Technol. Biomed. 8(2), 131–141 (2004)Google Scholar
  36. 36.
    J.-J. Rousselle, N. Vincent, N. Verbeke, Genetic algorithm to set active contour, in Computer Analysis of Images and Patterns (Springer, Berlin, 2003), pp. 345–352Google Scholar
  37. 37.
    R. Storn, K. Price, Differential evolution–a simple and efficient adaptive scheme for global optimization over continuous spaces: technical report tr-95-012. International Computer Science, Berkeley, California, 1995Google Scholar
  38. 38.
    M. Talebi, A. Ayatollahi, Genetic snake for medical ultrasound image segmentation. Image Analysis and Recognition (Springer, Berlin, 2011), pp. 48–58Google Scholar
  39. 39.
    L. Tang, K. Wang, G. Feng, Y. Li, An image segmentation algorithm based on the simulated annealing and improved snake model, in International Conference on Mechatronics and Automation, 2007. ICMA 2007 (IEEE, Piscataway, 2007), pp. 3876–3881Google Scholar
  40. 40.
    G.M. Teixeira, I.R. Pommeranzembaum, B.L. de Oliveira, M. Lobosco, R.W. Dos Santos, Automatic segmentation of cardiac MRI using snakes and genetic algorithms, in International Conference on Computational Science (Springer, Berlin, 2008), pp. 168–177Google Scholar
  41. 41.
    A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W.E. Grimson, A. Willsky, A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22(2), 137–154 (2003)CrossRefGoogle Scholar
  42. 42.
    M. Vera, A. Bravo, R. Medina, Myocardial border detection from ventriculograms using support vector machines and real-coded genetic algorithms. Comput. Biol. Med. 40(4), 446–455 (2010)CrossRefGoogle Scholar
  43. 43.
    X.-F. Wang, D.-S. Huang, H. Xu, An efficient local Chan–Vese model for image segmentation. Pattern Recogn. 43(3), 603–618 (2010)CrossRefGoogle Scholar
  44. 44.
    J.-M. Yang, C.-Y. Kao, Integrating adaptive mutations and family competition into genetic algorithms as function optimizer. Soft Comput. A Fusion Found. Methodol. Appl. 4(2), 89–102 (2000)Google Scholar
  45. 45.
    V. Zografos, Comparison of optimisation algorithms for deformable template matching. Advances in Visual Computing (Springer, Berlin, 2009), pp. 1097–1108Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • B. K. Tripathy
    • 1
    Email author
  • T. R. Sooraj
    • 2
  • R. K. Mohanty
    • 1
  1. 1.VIT UniversityVelloreIndia
  2. 2.Department of Computer ScienceProvidence College of EngineeringChengannurIndia

Personalised recommendations