Optimization of a HMM-Based Hand Gesture Recognition System Using a Hybrid Cuckoo Search Algorithm

  • K. Martin Sagayam
  • D. Jude Hemanth
  • X. Ajay Vasanth
  • Lawerence E. Henesy
  • Chiung Ching Ho


The authors develop an advanced hand motion recognition system for virtual reality applications using a well defined stochastic mathematical approach. Hand gesture is a natural way of interaction with a computer by interpreting the primitive characteristics of gesture movement to the system. This concerns three basic issues: (1) there is no physical contact between the user and the system, (2) the rotation of the hand gesture can be determined by the geometric features, and (3) the model parameter must be optimized to improve measurement of performance. A comparative analysis of other classification techniques used in hand gesture recognition is carried out on the proposed work hybrid with the bio-inspired metaheuristic approach, namely the cuckoo search algorithm, for reducing the complex trajectory in the hidden Markov model (HMM) model. An experimental result is as to how to validate the HMM model, based on the cost value of the optimizer, in order to improve the performance measures of the system.


Virtual reality Stochastic mathematical approach Shape-based features Gesture recognition Cuckoo search algorithm 


  1. 1.
    M.A. Al-Betar, β-Hill climbing: an exploratory local search, in Neural Computing and Applications (Springer, Berlin, 2016), pp. 1–16Google Scholar
  2. 2.
    H. Ardo, K. Astrom, R. Berthilsson, Real time Viterbi optimization of hidden Markov models for multi target tracking, in IEEE Workshop on Motion and Video Computing (2007). Scholar
  3. 3.
    H. Bay, T. Tuytelaars, L.V. Gool, SURF: speeded up robust features, in Proceedings of European Conference ECCV (2006), pp. 404–417Google Scholar
  4. 4.
    S. Bhowmick, S. Kumar, A. Kumar, Hand gesture recognition of English alphabets using artificial neural network, in IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS) (2015). Scholar
  5. 5.
    C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)Google Scholar
  6. 6.
    A.L. Bolaji, M.A. Al-Betar, M.A. Awadallah, A.T. Khader, L.M. Abualigah, A comprehensive review: Krill Herd algorithm and its applications. Appl. Soft Comput. 49, 437–446 (2016)Google Scholar
  7. 7.
    C.T. Brown, L.S. Liebovitch, R. Glendon, Lévy flights in Dobe Ju/’hoansi foraging patterns. Hum. Ecol. 35(1), 129–138 (2007)Google Scholar
  8. 8.
    T. Cardoso, J. Delgado, J. Barata, Hand gesture recognition towards enhancing accessibility, in 6th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Infoexclusion. Procedia Computer Science, vol. 67 (2015), pp. 419–429Google Scholar
  9. 9.
    Q. Chen, A. El-Sawah, C. Joslin, N.D. Georganas, A dynamic gesture interface for virtual environments based on hidden Markov models, in IEEE International Workshop on Haptic Audio Visual Environments and Their Applications (2005). Scholar
  10. 10.
    J.Y. Cheng, T. Mailund, Ancestral population genomics using coalescence hidden Markov models and heuristic optimisation algorithms. Comput. Biol. Chem. 57, 80–92 (2015)Google Scholar
  11. 11.
    Y. Dennemont, G. Bouyer, S. Otmane, M. Mallem, A discrete hidden Markov model recognition module for temporal series: application to real-time 3D hand gestures, in 3rd International Conference on Image Processing Theory, Tools, Applications (2013). Scholar
  12. 12.
    J. Du, W. Sheng, M. Liu, Human-guided robot 3D mapping using virtual reality technology, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2016). Scholar
  13. 13.
    I. Fister Jr., X.S. Yang, D. Fister et al., Cuckoo search: a brief literature review, in Cuckoo Search and Firefly Algorithm: Theory and Applications (Springer, Berlin, 2014), pp. 49–62Google Scholar
  14. 14.
    G.D. Forney, The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973).
  15. 15.
    W. Geem, J.H. Kim, G. Loganathan, A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)Google Scholar
  16. 16.
    F. Glover, Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977)Google Scholar
  17. 17.
    R.C. Gonzales, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice Hall, Upper Saddle River, 2008)Google Scholar
  18. 18.
    J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (University of Michigan Press, Michigan, 1975)Google Scholar
  19. 19.
    K. James, E. Rusell, Particle swarm optimization, in Proceedings of the 1995 IEEE International Conference on Neural Networks (1995), pp. 1942–1948Google Scholar
  20. 20.
    L. Juan, O. Gwun, A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Proc. 3(4), 143–152 (2009)Google Scholar
  21. 21.
    D. Karaboga, An idea based on honey bee swarm for numerical optimization. Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  22. 22.
    K. Khan, A. Sahai, Neural-based cuckoo search of employee health and safety (HS). Int. J. Intell. Syst. Appl. 5(20), 76–83 (2013)Google Scholar
  23. 23.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi et al., Optimization by simulated annealing. Science 220(4598), 671–680 (1983)Google Scholar
  24. 24.
    J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Subprograms (Cambridge University Press, Cambridge, 1994)Google Scholar
  25. 25.
    S. Koziel, X.S. Yang, Computational Optimization, Methods and Algorithms, vol. 356 (Springer, Berlin, 2011)Google Scholar
  26. 26.
    M.A. Laskar, A.J. Das, A.K. Talukdar, K.K. Sarma, Stereo vision-based hand gesture recognition under 3D environment. Procedia Comput. Sci. 58, 194–201 (2015)Google Scholar
  27. 27.
    R. Li, J.H. Zheng, C.Q. Pei, Text information extraction based on genetic algorithm and hidden Markov model, in 2009 First International Workshop on Education Technology and Computer Science, vol. 1 (2009), pp. 334–338Google Scholar
  28. 28.
    C.S. Panda, S. Patnaik, Better edge-gap in gray scale image using Gaussian method. Int. J. Comput. Appl. Math. 5(1), 53–65 (2010)Google Scholar
  29. 29.
    I. Pavlyukevich, Lévy flights, non-local search and simulated annealing. J. Comput. Phys. 226(2), 129–138 (2007)Google Scholar
  30. 30.
    A. Pradhana, B.B.V.L. Deepak, Design of intangible interface for mouse less computer handling using hand gesture. Procedia Comput. Sci. 79, 287–292 (2016)Google Scholar
  31. 31.
    F. Qin, A. Auerbach, F. Sachs, A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys. J. 79, 1915–1927 (2000)Google Scholar
  32. 32.
    L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–285 (1989)Google Scholar
  33. 33.
    R. Rajabioun, Cuckoo optimization algorithm. Appl. Soft Comput. 11(8), 5508–5518 (2011)Google Scholar
  34. 34.
    J. Rau, J. Gao, Z. Gong, Z. Ziang, Low-cost hand gesture learning and recognition based on hidden Markov model, in 2nd International Symposium on Information Science and Engineering (2010). Scholar
  35. 35.
    K.M. Sagayam, D.J. Hemanth, Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Reality 21(2), 91–107 (2017)Google Scholar
  36. 36.
    K.M. Sagayam, D.J. Hemanth, Application of pseudo 2-D hidden Markov model for hand gesture recognition, in Proceedings of the First International Conference on Computational Intelligence and Informatics. Advanced in Intelligent Systems and Computing, vol. 507 (Springer, Singapore, 2017).
  37. 37.
    K.M. Sagayam, D.J. Hemanth, Comparative analysis of 1-D HMM and 2-D HM for hand motion recognition applications, in Progress in Intelligent Computing Techniques: Theory, Practice, and Applications. Advanced in Intelligent Systems and Computing, vol. 518 (Springer, Singapore, 2017).
  38. 38.
    R.P. Sharma, G.K. Verma, Human computer interaction using hand gesture, in 11th International Multi-Conference on Information Processing. Procedia Computer Science, vol. 54 (2015), pp. 721–727Google Scholar
  39. 39.
    M. Shehab, A.T. Khader, M.A. Al-Betar, A survey on applications and variants of the cuckoo search algorithm. Appl. Soft Comput. (2017).
  40. 40.
    J. Shotton, A. Fitzgibbon, M. Cook et al., Real-time human pose recognition in parts from single depth images. CVPR 2011, 1297–1304 (2011)
  41. 41.
    R. Snapp, CS 295: pattern recognition, course notes. Department of Computer Science, University of Vermont (2015).
  42. 42.
    R. Storn, K.V. Price, Minimizing the real functions of the ICEC96 contest by differential evolution, in International Conference on Evolutionary Computation (1996), pp. 842–844Google Scholar
  43. 43.
    P. Sykora, P. Kamencay, R. Hudec, Comparison of SIFT and SURF methods for use of hand gesture recognition based on depth map, in AASRI Conference on Circuits and Signal Processing, vol. 9 (2014), pp. 19–24Google Scholar
  44. 44.
    R.-L. Vieriu, L. Mironica, B.-T. Goras, Background invariant static hand gesture recognition based on hidden Markov models, in International Symposium on Signals, Circuits and Systems (IEEE Publisher, New York, 2013).
  45. 45.
    G.M. Viswanathan, S.V. Buldyrev, S. Havlin et al., Optimizing the success of random searches. Nature 401(6756), 911–914 (1999)Google Scholar
  46. 46.
    G.M. Viswanathan, F. Bartumeus, S.V. Buldyrev et al., Lévy flight random searches in biological phenomena. Physica A 314(1), 208–213 (2002)Google Scholar
  47. 47.
    Z. Wang, E. Giannopoulos, M. Slater, A. Peer, Handshake: realistic human-robot interaction in haptic enhanced virtual reality. J. Presence 20(4), 371–392 (2011)Google Scholar
  48. 48.
    J. Xiao, L. Zou, C. Li, Optimization of hidden Markov model by a genetic algorithm for web information extraction, in Advances in Intelligent Systems Research. International Conference on Intelligent Systems and Knowledge Engineering (2007).,2007
  49. 49.
    X.S. Yang, Nature-Inspired Heuristic Algorithm (Luniver Press, Beckington, 2008), pp. 242–246Google Scholar
  50. 50.
    X.S. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd edn. (Luniver Press, Frome, 2010)Google Scholar
  51. 51.
    X.S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (Springer, Berlin, 2010), pp. 65–74Google Scholar
  52. 52.
    X.S. Yang, Firefly algorithm, in Engineering Optimization (2010), pp. 221–230.
  53. 53.
    X.S. Yang, S. Deb, Cuckoo Search via levy flights, in Nature & Biologically Inspired Computing. IEEE World Congress on NaBIC (2009), pp. 210–214Google Scholar
  54. 54.
    X.S. Yang, S. Deb, Cuckoo search: recent advances and applications. Neural Comput. Appl. 24(1), 169–174 (2014)Google Scholar
  55. 55.
    Z. Yang, Y. Li, W. Cheng, Y. Zheng, Dynamic hand gesture recognition using hidden Markov models, in IEEE 7th International Conference on Computer Science & Education (2012). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • K. Martin Sagayam
    • 1
  • D. Jude Hemanth
    • 1
  • X. Ajay Vasanth
    • 1
  • Lawerence E. Henesy
    • 2
  • Chiung Ching Ho
    • 3
  1. 1.School of Engineering and TechnologyKarunya UniversityCoimbatoreIndia
  2. 2.Department of Systems and Software EngineeringBlekinge Institute of TechnologyKarlskronaSweden
  3. 3.Department of Computing and InformaticsMultimedia UniversityCyberjayaMalaysia

Personalised recommendations