Advertisement

Improving the Performance of STT-MRAM LLC Through Enhanced Cache Replacement Policy

  • Pierre-Yves Péneau
  • David Novo
  • Florent Bruguier
  • Lionel Torres
  • Gilles Sassatelli
  • Abdoulaye Gamatié
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10793)

Abstract

Modern architectures adopt large on-chip cache memory hierarchies with more than two levels. While this improves performance, it has a certain cost in area and power consumption. In this paper, we consider an emerging non volatile memory technology, namely the Spin-Transfer Torque Magnetic RAM (STT-MRAM), with a powerful cache replacement policy in order to design an efficient STT-MRAM Last-Level Cache (LLC) in terms of performance. Well-known benefits of STT-MRAM are their near-zero static power and high density compared to volatile memories. Nonetheless, their high write latency may be detrimental to system performance. In order to mitigate this issue, we combine STT-MRAM with a recent cache The benefit of this combination is evaluated through experiments on SPEC CPU2006 benchmark suite, showing performance improvements of up to 10% compared to SRAM cache with LRU on a single core system.

Notes

Acknowledgements

This work has been funded by the French ANR agency under the grant ANR-15-CE25-0007-01, within the framework of the CONTINUUM project.

References

  1. 1.
    The ChampSim simulator. https://github.com/ChampSim/ChampSim
  2. 2.
  3. 3.
    ISCA 2017 Cache Replacement Championship. http://crc2.ece.tamu.edu
  4. 4.
    International Technology Roadmap for Semiconductors (ITRS) (2015)Google Scholar
  5. 5.
    Belady, L.A.: A study of replacement algorithms for a virtual-storage computer. IBM Syst. J. 5(2), 78–101 (1966)CrossRefGoogle Scholar
  6. 6.
    Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: NVSim: a circuit-level performance, energy, and area model for emerging nonvolatile memory. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 31(7), 994–1007 (2012)CrossRefGoogle Scholar
  7. 7.
    Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput. Archit. News 34(4), 1–17 (2006)CrossRefGoogle Scholar
  8. 8.
    Jain, A., Lin, C.: Back to the future: leveraging Belady’s algorithm for improved cache replacement. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 78–89. IEEE (2016)Google Scholar
  9. 9.
    Kommaraju, A.V.: Designing energy-aware optimization techniques through program behavior analysis. Ph.D. thesis, Indian Institute of Science, Bangalore (2014)Google Scholar
  10. 10.
    Li, Q., Shi, L., Li, J., Xue, C.J., He, Y.: Code motion for migration minimization in STT-RAM based hybrid cache. In: 2012 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 410–415. IEEE (2012)Google Scholar
  11. 11.
    Mittal, S.: A survey of architectural techniques for improving cache power efficiency. Sustain. Comput.: Inform. Syst. 4(1), 33–43 (2014)Google Scholar
  12. 12.
    Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: CACTI 6.0: a tool to model large caches. HP Laboratories, pp. 22–31 (2009)Google Scholar
  13. 13.
    Péneau, P.Y., Bouziane, R., Gamatié, A., Rohou, E., Bruguier, F., Sassatelli, G., Torres, L., Senni, S.: Loop optimization in presence of STT-MRAM caches: a study of performance-energy tradeoffs. In: 2016 26th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), pp. 162–169. IEEE (2016)Google Scholar
  14. 14.
    Senni, S., Delobelle, T., Coi, O., Péneau, P.Y., Torres, L., Gamatié, A., Benoit, P., Sassatelli, G.: Embedded systems to high performance computing using STT-MRAM. In: 2017 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 536–541. IEEE (2017)Google Scholar
  15. 15.
    Smullen, C.W., Mohan, V., Nigam, A., Gurumurthi, S., Stan, M.R.: Relaxing non-volatility for fast and energy-efficient STT-RAM caches. In: 2011 IEEE 17th International Symposium on High Performance Computer Architecture (HPCA), pp. 50–61. IEEE (2011)Google Scholar
  16. 16.
    Sun, G., Dong, X., Xie, Y., Li, J., Chen, Y.: A novel architecture of the 3D stacked MRAM L2 cache for CMPs. In: IEEE 15th International Symposium on High Performance Computer Architecture, HPCA 2009, pp. 239–249. IEEE (2009)Google Scholar
  17. 17.
    Vetter, J.S., Mittal, S.: Opportunities for nonvolatile memory systems in extreme-scale high-performance computing. Comput. Sci. Eng. 17(2), 73–82 (2015)CrossRefGoogle Scholar
  18. 18.
    Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., Xie, Y.: Hybrid cache architecture with disparate memory technologies. In: ACM SIGARCH Computer Architecture News, vol. 37, pp. 34–45. ACM (2009)Google Scholar
  19. 19.
    Zhou, P., Zhao, B., Yang, J., Zhang, Y.: Energy reduction for STT-RAM using early write termination. In: IEEE/ACM International Conference on Computer-Aided Design-Digest of Technical Papers, ICCAD 2009, pp. 264–268. IEEE (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pierre-Yves Péneau
    • 1
  • David Novo
    • 1
  • Florent Bruguier
    • 1
  • Lionel Torres
    • 1
  • Gilles Sassatelli
    • 1
  • Abdoulaye Gamatié
    • 1
  1. 1.LIRMMCNRS and University of MontpellierMontpellierFrance

Personalised recommendations