Advertisement

Towards Entity Timeline Analysis in Polish Political News

  • Katarzyna Baraniak
  • Marcin Sydow
Chapter
Part of the Studies in Big Data book series (SBD, volume 40)

Abstract

Our work presents a simple method of analysing occurrences of entities in news articles. We demonstrate that frequency of named entities in news articles is a reflection of events in real world related to these entities. Occurrences and co-occurrences of entities between portals were compared. We made visualisation of entities frequency in a timeline which can be used to analyse the history of entity occurrences.

Notes

Acknowledgements

The work is partially supported by the Polish National Science Centre grant 2012/07/B/ST6/01239.

References

  1. 1.
    Althoff, T., Dong, X.L., Murphy, K., Alai, S., Dang, V., Zhang, W.: Timemachine: timeline generation for knowledge-base entities. CoRR (2015). arXiv:1502.04662, http://dblp.uni-trier.de/db/journals/corr/corr1502.html#AlthoffDMADZ15
  2. 2.
    Marcinczuk, M., Kocon, J., Janicki, M.: Liner2 - a customizable framework for proper names recognition for polish. In: Bembenik, R., Skonieczny, L., Rybinski, H., Kryszkiewicz, M., Niezgodka, M. (eds.) Intelligent Tools for Building a Scientific Information Platform. Studies in Computational Intelligence, pp. 231–253. Springer, Berlin (2013). http://dblp.uni-trier.de/db/series/sci/sci467.html#MarcinczukKJ13
  3. 3.
    Mazeika, A., Tylenda, T., Weikum, G.: Entity timelines: visual analytics and named entity evolution. In: Macdonald, C., Ounis, I., Ruthven, I. (eds.) CIKM. pp. 2585–2588. ACM (2011). http://dblp.uni-trier.de/db/conf/cikm/cikm2011.html#MazeikaTW11
  4. 4.
    Saleiro, P., Teixeira, J., Soares, C., Oliveira, E.: Timemachine: Entity-centric search and visualization of news archives. In: European Conference on Information Retrieval. pp. 845–848. Springer (2016)Google Scholar
  5. 5.
    Shahaf, D., Guestrin, C.: Connecting the dots between news articles. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 623–632. KDD ’10, ACM, New York (2010). http://doi.acm.org/10.1145/1835804.1835884

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Polish-Japanese Academy of Information TechnologyWarsawPoland
  2. 2.Institute of Computer SciencePolish Academy of SciencesWarsawPoland

Personalised recommendations