Advertisement

Musical Organisms

A Generative Approach to Growing Musical Scores
  • Anna Lindemann
  • Eric Lindemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10783)

Abstract

In this paper, we describe the creation of Musical Organisms using a novel generative music composition approach modeled on biological evolutionary and developmental (Evo Devo) processes. We are interested in using the Evo Devo processes that generate biological organisms with diverse and interesting structures—structures that exhibit modularity, repetition, and hierarchy—in order to create diverse music compositions that exhibit these same structural properties. The current focus of our work has been on Musical Organism development. Our Musical Organisms are musical scores that develop from a single musical note, just as a biological organism develops from a single cell. We describe the musical genome and the non-linear dynamical processes that drive the development of the Musical Organism from single note to complex musical score. While the evolution of Musical Organisms has not been our central focus, we describe how evolution can act upon genomic variation within populations of Musical Organisms to create new Musical Organism species with diverse and complex structures. And we introduce the concept of genome embedding as a unique method for generating genetic variation in a population, and developing structural modularity in Musical Organisms.

References

  1. 1.
    Lindemann, A., Lindemann, E.: Evo Devo Music. http://annalindemann.com/evo-devo-music/
  2. 2.
    Lindemann, A., Lindemann, E.: Rhythm zoo: music composition modeled on genetic networks. In: Proceedings of the 21st International Symposium on Electronic Art., Vancouver, Canada (2015)Google Scholar
  3. 3.
    Maienschein, J., Laubichler, M.D.: From Embryology to Evo-Devo: A History of Developmental Evolution. The MIT Press, Cambridge (2007)Google Scholar
  4. 4.
    Darwin, C.: On the Origin of Species. Penguin Classics, London (1859)Google Scholar
  5. 5.
    Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C., Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P., Canaider, S.: An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013)CrossRefGoogle Scholar
  6. 6.
    Xiong, F., Megason, S.: Movie: zebrafish embryonic development at single cell resolution. https://youtu.be/RQ6vkDr_Dec
  7. 7.
    Biles, J.: GenJam: a genetic algorithm for generating jazz solos. In: Proceedings of the 19th International Computer Music Conference, pp. 131–137 (1994)Google Scholar
  8. 8.
    Stoll, T.M.: Genomic: evolving sound treatments using genetic algorithms. In: Romero, J., McDermott, J., Correia, J. (eds.) EvoMUSART 2014. LNCS, vol. 8601, pp. 107–118. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44335-4_10 Google Scholar
  9. 9.
    Moroni, A., Manzolli, J., von Zuben, F., Gudwin, R.: Vox populi: an interactive evolutionary system for algorithmic music composition. Leonardo Music J. 10, 49–54 (2000)CrossRefGoogle Scholar
  10. 10.
    MacCallum, R.M., Mauch, M., Burt, A., Leroi, A.M.: Evolution of music by public choice. Proc. Natl. Acad. Sci. 109, 12081–12086 (2012)CrossRefGoogle Scholar
  11. 11.
    Degazio, B.: The evolution of musical organisms. Leonardo Music J. 7, 27–33 (1997)CrossRefGoogle Scholar
  12. 12.
    Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 205–213. MIT Press (1997)Google Scholar
  13. 13.
    Bentley, P., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Genetic and Evolutionary Computation Conference GECCO 1999, pp. 35–43 (1999)Google Scholar
  14. 14.
    McCormack, J.: A developmental model for generative media. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 88–97. Springer, Heidelberg (2005).  https://doi.org/10.1007/11553090_10 CrossRefGoogle Scholar
  15. 15.
    Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8, 131–162 (2007)CrossRefGoogle Scholar
  16. 16.
    Clune, J., Lipson, H.: Evolving 3D objects with a generative encoding inspired by developmental biology. ASM SIGEVOlution 5, 2–12 (2011)CrossRefGoogle Scholar
  17. 17.
    Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 167–174. ACM, New York (2013)Google Scholar
  18. 18.
    Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B 280, 20122863 (2013)CrossRefGoogle Scholar
  19. 19.
    Carroll, S.B., Grenier, J.K., Weatherbee, S.D.: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell, Malden (2004)Google Scholar
  20. 20.
    Monteiro, A.: Gene regulatory networks reused to build novel traits. BioEssays 34, 181–186 (2012)CrossRefGoogle Scholar
  21. 21.
    Margulis, L.: Origin of Eukaryotic Cells. Yale University Press, New Haven (1970)Google Scholar
  22. 22.
    Ryan, F.: Virolution. Collins, London (2009)Google Scholar
  23. 23.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.L., Postlethwait, J.: Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Digital Media and Design DepartmentUniversity of ConnecticutStorrsUSA
  2. 2.SynfulBoulderUSA

Personalised recommendations