Advertisement

Construction of a Repertoire of Analog Form-Finding Techniques as a Basis for Computational Morphological Exploration in Design and Architecture

  • Ever Patiño
  • Jorge Maya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10783)

Abstract

The article describes the process of constructing a repertoire of analog form-finding techniques, which can be used in evolutionary computation to (i) compare the techniques among them and select the most suitable for a project, (ii) to explore forms or shapes in an analog and/or manual way, (iii) as a basis for the development of algorithms in specialized software, (iv) or to understand the physical processes and mathematical procedures of the techniques. To our knowledge no one has built a repertoire of this nature, since all the techniques are in sources of diverse disciplines. Methodologically, the construction process was based on a systematic review of the literature, allowing us to identify 33 techniques where the principles of bio-inspiration and self-organization are evident, characteristics both of form-finding strategies. As a result, we present the repertoire structure, composed of five groups of techniques sharing similar physical processes: inflate, group, de-construct, stress, solidify and fold. Subsequently, the repertoire’s conceptual, mathematical, and graphical analysis categories are presented. Finally, conclusions of potential applications and research trends of the subject are presented.

Keywords

Form-finding Morphogenetic design Bio-inspiration Form generation Generative design 

References

  1. 1.
    Howard, T.J., Culley, S.J., Dekoninck, E.: Describing the creative design process by the integration of engineering design and cognitive psychology literature. Des. Stud. 29(2), 160–180 (2008).  https://doi.org/10.1016/j.destud.2008.01.001 CrossRefGoogle Scholar
  2. 2.
    Römer, A., Pache, M., Weißhahn, G., Lindemann, U., Hacker, W.: Effort-saving product representations in design—results of a questionnaire survey. Des. Stud. 22(6), 473–491 (2001).  https://doi.org/10.1016/S0142-694X(01)00003-5 CrossRefGoogle Scholar
  3. 3.
    Terstiege, G. (ed.): The Making of Design: From the First Model to the Final Product. Birkhäuser, Basel (2009)Google Scholar
  4. 4.
    Egenhofer, M.J.: Qualitative spatial-relation reasoning for design. In: Gero, J.S. (ed.) Studying Visual and Spatial Reasoning for Design Creativity, pp. 153–175. Springer, Dordrecht (2015).  https://doi.org/10.1007/978-94-017-9297-4_9 Google Scholar
  5. 5.
    Oxman, R.: Design by re-representation: a model of visual reasoning in design. Des. Stud. 18(4), 329–347 (1997).  https://doi.org/10.1016/S0142-694X(97)00005-7 CrossRefGoogle Scholar
  6. 6.
    Wilmaz, S., Ae, J., Se, Y.: Effects of cognitive activities on designer creativity and performance: a detailed look into the visual reasoning model. In: Conference on Korea-Japan Design Engineering Workshop, Seoul, South Korea (2016)Google Scholar
  7. 7.
    Park, J.A., Kim, Y.S.: Visual reasoning and design processes. In: International Conference on Engineering Design (ICED), Paris (2007). https://doi.org/10.1.1.93.9799Google Scholar
  8. 8.
    Goldschmidt, G.: Modeling the role of sketching in design idea generation. In: Chakrabarti, A., Blessing, Lucienne T.M. (eds.) An Anthology of Theories and Models of Design, pp. 433–450. Springer, London (2014).  https://doi.org/10.1007/978-1-4471-6338-1_21 CrossRefGoogle Scholar
  9. 9.
    Singh, V., Gu, N.: Towards an integrated generative design framework. Des. Stud. 33(2), 185–207 (2012).  https://doi.org/10.1016/j.destud.2011.06.001 CrossRefGoogle Scholar
  10. 10.
    Johnson, G., Gross, M.D., Hong, J., Do, E.Y.L.: Computational support for sketching in design: a review. Found. Trends® Hum.-Comput. Interact. 2(1), 1–93 (2009).  https://doi.org/10.1561/1100000013 CrossRefGoogle Scholar
  11. 11.
    Catalano, C.E., Falcidieno, B., Giannini, F., Monti, M.: A survey of computer-aided modeling tools for aesthetic design. J. Comput. Inf. Sci. Eng. 2(1), 11–20 (2002).  https://doi.org/10.1115/1.1481371 CrossRefGoogle Scholar
  12. 12.
    Post, R.A.G., Blijlevens, J., Hekkert, P.: Unity-in-variety in product design aesthetics. In: Proceedings of the TeaP 2013, p. 217. Pabst Science Publishers (2013)Google Scholar
  13. 13.
    Thurgood, C., Hekkert, P., Blijlevens, J.: The joint effect of typicality and novelty on aesthetic pleasure for product designs: influences of safety and risk. In: International Association of Empirical Aesthetics, pp. 391–396 (2014)Google Scholar
  14. 14.
    Purcell, A., Gero, J.S.: Drawings and the design process: a review of protocol studies in design and other disciplines and related research in cognitive psychology. Des. Stud. 19(4), 389–430 (1998).  https://doi.org/10.1016/S0142-694X(98)00015-5 CrossRefGoogle Scholar
  15. 15.
    Mougenot, C., Bouchard, C., Aoussat, A.: Creativity in design—how designers gather information in the “Preparation” phase. In: Proceedings of IASDR 2007, pp. 11–15 (2007)Google Scholar
  16. 16.
    Baxter, M.: Product Design: Practical Methods for the Systematic Development of New Products. CRC Press, Boca Raton (1995)Google Scholar
  17. 17.
    Goldschmidt, G., Smolkov, M.: Variances in the impact of visual stimuli on design problem solving performance. Des. Stud. 27(5), 549–569 (2006).  https://doi.org/10.1016/j.destud.2006.01.002 CrossRefGoogle Scholar
  18. 18.
    Goldschmidt, G.: Ubiquitous serendipity: potential visual design stimuli are everywhere. In: Gero, J.S. (ed.) Studying Visual and Spatial Reasoning for Design Creativity, pp. 205–214. Springer, Dordrecht (2015).  https://doi.org/10.1007/978-94-017-9297-4_12 Google Scholar
  19. 19.
    Hopf, A.: Renaissance 2.0—expanding the morphologic repertoire in design. In: 24th Cumulus Conference, vol. 24, no. 09, pp. 78–85, September 2009Google Scholar
  20. 20.
    Celani, G.: Enseñando diseño generativo: una experiencia didáctica. XII Congreso Sigradi, Cuba. Diciembre, pp. 1–4 (2008)Google Scholar
  21. 21.
    Burry, J., Maher, A.: The other mathematical bridge. Nexus Netw. J. Architect. Math. 10(1), 179–194 (2008).  https://doi.org/10.1007/978-3-7643-8728-0_11 CrossRefzbMATHGoogle Scholar
  22. 22.
    Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative design tools. Autom. Constr. 14(2), 253–264 (2005).  https://doi.org/10.1016/j.autcon.2004.07.002 CrossRefGoogle Scholar
  23. 23.
    Szalapaj, P.: Contemporary Architecture and the Digital Design Process. Routledge, Abingdon (2014)Google Scholar
  24. 24.
    McCormack, J., Dorin, A., Innocent, T.: Generative design: a paradigm for design research. In: Proceedings of the Futureground, Design Research Society, Melbourne (2004)Google Scholar
  25. 25.
    Menges, A.: Pluripotent components and polymorphous systems: an alternative approach to parametric design. AA Files 52, 63–74 (2005)Google Scholar
  26. 26.
    Chase, S.C.: Generative design tools for novice designers: issues for selection. Autom. Constr. 14(6), 689–698 (2005).  https://doi.org/10.1016/j.autcon.2004.12.004 CrossRefGoogle Scholar
  27. 27.
    Otto, F., Rasch, B.: Finding Form: Towards an Architecture of the Minimal. Axel Menges, Alemania (2001)Google Scholar
  28. 28.
    Oxman, R.: Morphogenesis in the theory and methodology of digital tectonics. J. Int. Assoc. Shell Spat. Struct. 51(3), 195 (2010)Google Scholar
  29. 29.
    Spuybroek, L.: Textile tectonics: an interview. In: Garcia, M., (ed.) Architextiles, AD, Profile no. 184, pp. 52–59 [23] Vanucci (2006)Google Scholar
  30. 30.
    Wagensberg, J.: La rebelión de las formas. O cómo perseverar cuando la incertidumbre aprieta. Matemas, Barcelona (2004)Google Scholar
  31. 31.
    Vincent, J.F., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., Pahl, A.K.: Biomimetics: its practice and theory. J. R. Soc. Interface 3(9), 471–482 (2006).  https://doi.org/10.1098/rsif.2006.0127 CrossRefGoogle Scholar
  32. 32.
    Jirapong, K., Krawczyk, R.J., Elnimeiri, M.: Natural forms as virtual architectures. In: Proceedings of the 20th Conference on Education in Computer Aided Architectural Design in Europe, Warsaw, pp. 1–4 (2002)Google Scholar
  33. 33.
    Wen, H.I., Zhang, S.J., Hapeshi, K., Wang, X.F.: An innovative methodology of product design from nature. J. Bionic. Eng. 5(1), 75–84 (2008).  https://doi.org/10.1016/S1672-6529(08)60009-8 CrossRefGoogle Scholar
  34. 34.
    Bejan, A., Lorente, S.: Constructal law of design and evolution: physics, biology, technology, and society. J. Appl. Phys. 113(15), 6 (2013).  https://doi.org/10.1063/1.4798429 CrossRefGoogle Scholar
  35. 35.
    MRGD: MORPHE MRGD. Springer Wien New York, New York, E.E.U.U (2008)Google Scholar
  36. 36.
    Schumacher, P.: Preface: Autopoietic Elegance. In: MORPHE MRGD (ed.) Research Institute for Experimental Architecture, pp. 6–8. Springer Wien New York, New York, E.E.U.U (2008)Google Scholar
  37. 37.
    McKay, A., Chase, S., Garner, S., Jowers, I., Prats, M., Hogg, D., Lim, S.: Design synthesis and shape generation. In: Inns, T. (ed.) Designing for the 21st Century: Interdisciplinary Methods and Findings, pp. 304–321. Gower Publishing Ltd., Aldershot (2009)Google Scholar
  38. 38.
    Kull, U.: Frei Otto and biology. In: Nerdinger, W. (ed.) Frei Otto, Complete Works: Lightweight Construction Natural Design, pp. 44–55. Birkhauser, Basel (2005)Google Scholar
  39. 39.
    Menges, A.: Biomimetic design processes in architecture: morphogenetic and evolutionary computational design. Bioinspiration Biomim. 7(1), 015003 (2012).  https://doi.org/10.1088/1748-3182/7/1/015003 CrossRefGoogle Scholar
  40. 40.
    Arbeláez, E., Patiño, E.: Generación y transformación de la forma. UPB, Medellín (2010)Google Scholar
  41. 41.
    Georgescu-Roegen, N.: The Law of Entropy and the Economic Process. Harvard University Press, Cambridge (1971)CrossRefGoogle Scholar
  42. 42.
    Patiño, E., Arango, M., Jaramillo, J.: Biomimética o la traducción de los fenómenos biológicos al diseño. Iconofacto. 11(16), 201–212 (2015)Google Scholar
  43. 43.
    Hildebrandt, S., Tromba, A.: Matemática y formas óptimas. Prensa Científica, Barcelona (1990)Google Scholar
  44. 44.
    Calvert, P.: Biomimetic ceramics and composites. MRS Bull. 17(10), 37–40 (1992).  https://doi.org/10.1557/S0883769400046467 CrossRefGoogle Scholar
  45. 45.
    Sorguç, A.G., Hagiwara, I., Selcuk, S.: Origamics in architecture: a medium of inquiry for design in architecture. METU JFA 2, 26 (2009).  https://doi.org/10.4305/METU.JFA.2009.2.12 Google Scholar
  46. 46.
    Rojo, J.J.: Miguel Fisac Serna. Arquitecto. Vida y obra. Universidad de Valladolid (2013). http://uvadoc.uva.es/handle/10324/4860
  47. 47.
    Fuller, R.B.: Synergetics: explorations in the geometry of thinking. Estate of R. Buckminster Fuller, San Francisco (1982)Google Scholar
  48. 48.
    Rodríguez, F.S., Sañudo, L.G., Vanegas, D.E.: Estructuras Ligeras. UPB, Medellín (2006)Google Scholar
  49. 49.
    Nabaei, S.S., Baverel, O., Weinand, Y.: Mechanical form-finding of the timber fabric structures with dynamic relaxation method. Int. J. Space Struct. 28(3–4), 197–214 (2013)CrossRefGoogle Scholar
  50. 50.
    Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A., Glueck, M., Khan, A.: Physics-based generative design. In: CAAD Futures Conference, pp. 231–244 (2009)Google Scholar
  51. 51.
    De Micoli, S., Rinderspacher, K., Menges, A.: Stone morphologies: erosion-based digital fabrication through event-driven control. In: De Rycke, K., Gengnagel, C., Baverel, O., Burry, J., Mueller, C., Nguyen, M.M., Rahm, P., Ramsgaard Thomsen, M. (eds.) Humanizing Digital Reality, pp. 113–124. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-10-6611-5_11 CrossRefGoogle Scholar
  52. 52.
    Schaur, E.: IL39: non-planned settlements: characteristic features - path system, surface subdivision. Institut für leichte Flächentragwerke, Universität Stuttgart, Stuttgart (1992)Google Scholar
  53. 53.
    Oxman, N., Rosenberg, J.L.: Material-based design computation an inquiry into digital simulation of physical material properties as design generators. Int. J. Archit. Comput. 5(1), 25–44 (2007)CrossRefGoogle Scholar
  54. 54.
    GT2P: Great things to people. In: Plaza, C. (ed.), Nuevos Creativos Chilenos, vol. 1, pp. 30-35. Santiago de Chile, Talleres Ograma (2015)Google Scholar
  55. 55.
    Sanchiz, G.: Porous cast. In: Hensel, M., Menges, A. (eds.) Architectural Design: Versatility and Vicissitude. Wiley, London (2008). 60 p.Google Scholar
  56. 56.
    Bletzinger, K.U., Ramm, E.: Structural optimization and form finding of light weight structures. Comput. Struct. 79(22), 2053–2062 (2001).  https://doi.org/10.1016/S0045-7949(01)00052-9 CrossRefGoogle Scholar
  57. 57.
    Agkathidis, A.: Diseño generativo: Procesos para concebir nuevas formas arquitectónicas. Promopress, Barcelona (2013)Google Scholar
  58. 58.
    Sastre, R.: Las estructuras neumáticas y la presión interior (2012). http://www.wintess.com/las-estructuras-neumaticas-y-la-presion-interior/
  59. 59.
    Eggers, H.: Acerca de la estática y el dimensionamiento de las estructuras soportadas por aire. In: Herzog, Y.: (ed.), Construcciones neumáticas: Manual de arquitectura hinchable, pp. 164–182. Editorial Gustavo Gili, Barcelona (1977)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad EAFIT/Universidad Pontificia BolivarianaMedellínColombia
  2. 2.Universidad EAFITMedellínColombia

Personalised recommendations