Visual Art Inspired by the Collective Feeding Behavior of Sand-Bubbler Crabs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10783)


Sand-bubblers are crabs of the genera Dotilla and Scopimera which are known to produce remarkable patterns and structures at tropical beaches. From these pattern-making abilities, we may draw inspiration for digital visual art. A simple mathematical model is proposed and an algorithm is designed that may create such sand-bubbler patterns artificially. In addition, design parameters to modify the patterns are identified and analyzed by computational aesthetic measures. Finally, an extension of the algorithm is discussed that may enable controlling and guiding generative evolution of the art-making process.


  1. 1.
    Abbood, Z.A., Amlal, O., Vidal, F.P.: Evolutionary art using the fly algorithm. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 455–470. Springer, Cham (2017). CrossRefGoogle Scholar
  2. 2.
    Ansell, A.D.: Migration or shelter? Behavioural options for deposit feeding crabs on tropical sandy shores. In: Chelazzi, G., Vannini, M. (eds.) Behavioral Adaptation to Intertidal Life. NATO ASI Series (Series A: Life Sciences), vol. 151, pp. 15–26. Springer, Boston (1988). CrossRefGoogle Scholar
  3. 3.
    Bigalke, R.: On the habits of the crab Dotilla fenestrata, Hilgendorf, with special reference to the mode of feeding. South Afr. J. Nat. Hist. 3, 205–209 (1921)Google Scholar
  4. 4.
    Burton, A.: Symbols in sand. Front. Ecol. Environ. 14, 456 (2016)CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, A., Chakrabarti, R., Hertweck, G.: Surface traces and bioturbate textures from bubbler crabs: an indicator of subtropical to tropical tidal flat environments. Senckenb. Marit 36, 19–27 (2006)CrossRefGoogle Scholar
  6. 6.
    den Heijer, E., Eiben, A.E.: Investigating aesthetic measures for unsupervised evolutionary art. Swarm Evol. Comput. 16, 52–68 (2014)CrossRefGoogle Scholar
  7. 7.
    Fielder, D.R.: The feeding behaviour of the sand crab Scopimera inflata (Decapoda, Ocypodidae). J. Zool. (Lond.) 160, 35–49 (1970)CrossRefGoogle Scholar
  8. 8.
    Galanter, P.: The problem with evolutionary art is \(\ldots \). In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 321–330. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  9. 9.
    Galanter, P.: Computational aesthetic evaluation: past and future. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp. 255–293. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  10. 10.
    Galanter, P.: Generative art theory. In: Paul, C. (ed.) A Companion to Digital Art, pp. 146–180. John Wiley, Chichester (2016)CrossRefGoogle Scholar
  11. 11.
    Gherardi, F., Russo, S.: Burrowing activity in the sand-bubbler crab, Dotilla fenestrata (Crustacea, Ocypodidae), inhabiting a mangrove swamp in Kenya. J. Zool. (Lond.) 253, 211–223 (2001)CrossRefGoogle Scholar
  12. 12.
    Greenfield, G., Machado, P.: Ant- and ant-colony-inspired alife visual art. Artif. Life 21, 293–306 (2015)CrossRefGoogle Scholar
  13. 13.
    Hartnoll, R.G.: Factors affecting the distribution and behaviour of the crab Dotilla fenestrata on East African shores. Estuar. Coast. Mar. Sci. 1, 137–152 (1973)CrossRefGoogle Scholar
  14. 14.
    House, A., Agah, A.: Autonomous evolution of digital art using genetic algorithms. J. Intell. Syst. 25, 319–333 (2016)Google Scholar
  15. 15.
    Jacob, C.J., Hushlak, G., Boyd, J.E., Nuytten, P., Sayles, M., Pilat, M.: Swarmart: interactive art from swarm intelligence. Leonardo 40, 248–254 (2007)CrossRefGoogle Scholar
  16. 16.
    Johnson, C.G.: Fitness in evolutionary art and music: a taxonomy and future prospects. Int. J. Arts Technol. 9, 4–25 (2016)CrossRefGoogle Scholar
  17. 17.
    Luschi, P., Del Seppia, C., Crosio, E.: Orientation during short-range feeding in the crab Dotilla wichmanni. J. Comp. Physiol. A. 181, 461–468 (1997)CrossRefGoogle Scholar
  18. 18.
    Machado, P., Martins, T., Amaro, H., Abreu, P.H.: An interface for fitness function design. In: Romero, J., McDermott, J., Correia, J. (eds.) EvoMUSART 2014. LNCS, vol. 8601, pp. 13–25. Springer, Heidelberg (2014). Google Scholar
  19. 19.
    Mallon, B., Redies, C., Hayn-Leichsenring, G.U.: Beauty in abstract paintings: perceptual contrast and statistical properties. Front. Hum. Neurosci. 8, 161 (2014)CrossRefGoogle Scholar
  20. 20.
    Mohan, P.M., Pandey, P., Vijay, D., Dhivya, P.: Studies on morphology and orientation of pseudofaecal pellets of sand bubbler crab. J. Coast. Env. 2, 129–142 (2011)Google Scholar
  21. 21.
    Neumann, A., Alexander, B., Neumann, F.: Evolutionary image transition using random walks. In: Correia, J., Ciesielski, V., Liapis, A. (eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 230–245. Springer, Cham (2017). CrossRefGoogle Scholar
  22. 22.
    Romero, J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2008). Google Scholar
  23. 23.
    Ross, B.J., Ralph, W., Zong, H.: Evolutionary image synthesis using a model of aesthetics. In: Yen, G.G. (ed.) Proceedings of the IEEE Congress on Evolutionary Computation, IEEE CEC 2006, pp. 1087–1094. IEEE Press, Piscataway (2006)Google Scholar
  24. 24.
    Spehar, B., Clifford, C.W., Newell, B.R., Taylor, R.P.: Universal aesthetic of fractals. Comput. Graph. 27, 813–820 (2003)CrossRefGoogle Scholar
  25. 25.
    Urbano, P.: The T. albipennis sand painting artists. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 414–423. Springer, Heidelberg (2011). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Information TechnologyHTWK Leipzig University of Applied SciencesLeipzigGermany

Personalised recommendations