Co-evolving Melodies and Harmonization in Evolutionary Music Composition

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10783)

Abstract

The paper describes a novel multi-objective evolutionary algorithm implementation that generates short musical ideas consisting of a melody and abstract harmonization, developed in tandem. The system is capable of creating these ideas based on provided material or autonomously. Three automated fitness features were adapted to the model to evaluate the generated music during evolution, and a fourth was developed to ensure harmonic progression. Four rhythmical pattern matching features were also developed. 21 pieces of music, produced by the system under various configurations, were evaluated in a user study. The results indicate that the system is capable of composing musical ideas that are subjectively interesting and pleasant, but not consistently.

References

  1. 1.
    Hiller, L.A., Isaacson, L.M.: Musical composition with a high-speed digital computer. J. Audio Eng. Soc. 6(3), 154–160 (1958)Google Scholar
  2. 2.
    Moroni, A., Manzolli, J., Zuben, F.V., Gudwin, R.: Vox Populi: an interactive evolutionary system for algorithmic composition. Leonardo Music J. 10, 49–54 (2000)CrossRefGoogle Scholar
  3. 3.
    Sánchez-Quintana, C., Moreno-Arcas, F., Albarracín-Molina, D., Fernández, J.D., Vico, F.: Melomics: a case-study of AI in Spain. AI Mag. 34, 99–103 (2013)CrossRefGoogle Scholar
  4. 4.
    McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32003-6_43 CrossRefGoogle Scholar
  5. 5.
    Galanter, P.: The problem with evolutionary art is. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 321–330. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12242-2_33 CrossRefGoogle Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Horner, A., Goldberg, D.E.: Genetic algorithms and computer assisted music composition. In: Proceedings of International Conference on Genetic Algorithms, pp. 337–441 (1991)Google Scholar
  8. 8.
    Ricanek, K., Homaifar, A., Lebby, G.: Genetic algorithm composes music. In: Proceedings of Southeastern Symposium on System Theory, pp. 223–227 (1993)Google Scholar
  9. 9.
    Marques, V.M., Oliveira, V., Vieira, S., Rosa, A.C.: Music composition using genetic evolutionary algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 714–719 (2000)Google Scholar
  10. 10.
    Papadopoulus, G., Wiggins, G.: A genetic algorithm for the generation of jazz melodies. In: Proceedings of Finnish Conference on Artificial Intelligence (STeP) (1998)Google Scholar
  11. 11.
    Johnson, M., Tauritz, D.R., Wilkerson, R.: Evolutionary computation applied to melody generation. In: Proceedings of Artificial Neural Networks in Engineering (ANNIE) Conference (2004)Google Scholar
  12. 12.
    Towsey, M.W., Brown, A.R., Wright, S.K., Diedereich, J.: Towards melodic extension using genetic algorithms. Educ. Technol. Soc. 4(2), 54–65 (2001)Google Scholar
  13. 13.
    de Freitas, A.R.R., Guimarães, F.G., Barbosa, R.V.: Ideas in automatic evaluation methods for melodies in algorithmic composition. In: Proceedings of 9th Sound and Music Computing Conference, pp. 514–520. Copenhagen, Denmark (2012)Google Scholar
  14. 14.
    Biles, J.A.: Autonomous GenJam: eliminating the fitness bottleneck by eliminating fitness. In: Proceedings of 2001 Genetic and Evolutionary Computation Conference Workshop Program, San Francisco, California (2001)Google Scholar
  15. 15.
    Freitas, A., Guimarães, F.: Originality and diversity in the artificial evolution of melodies. In: Proceedings of 13th annual conference on Genetic and Evolutionary Computation, pp. 419–416 (2011)Google Scholar
  16. 16.
    Freitas, A., Guimarães, F.: Melody harmonization in evolutionary music using multiobjective genetic algorithms. In: Proceedings of Sound and Music Computing Conference (2011)Google Scholar
  17. 17.
    De Prisco, R., Zaccagnino, G., Zaccagnino, R.: EvoBassComposer: a multi-objective genetic algorithm for 4-voice compositions. In: Proceedings of 12th Annual Conference on Genetic and Evolutionary Computation, pp. 817–818. ACM (2010)Google Scholar
  18. 18.
    Jeong, J.H., Ahn, C.W.: Automatic evolutionary music composition based on multi-objective genetic algorithm. In: Handa, H., Ishibuchi, H., Ong, Y.-S., Tan, K.-C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2. PALO, vol. 2, pp. 105–115. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-13356-0_9 Google Scholar
  19. 19.
    Nelson, G.L.: Sonomorphs: an application of genetic algorithms to the growth and development of musical organisms. In: Proceedings of Biennial Symposium on Arts and Technology, pp. 155–169 (1994)Google Scholar
  20. 20.
    Biles, J.A.: GenJam: a genetic algorithm for generating jazz solos. In: Proceedings of International Computer Music Conference (1994)Google Scholar
  21. 21.
    Biles, J.A., Anderson, P., Loggi, L.: Neural network fitness function for a musical IGA. In: Proceedings of International Symposium on Intelligent Industrial Automation and Soft Computing (1996)Google Scholar
  22. 22.
    Hild, H., Feulner, J., Menzel, W.: HARMONET: A neural net for harmonizing chorales in the style of J.S. Bach. In: Advances in Neural Information Processing Systems, pp. 267–274 (1992)Google Scholar
  23. 23.
    Feulner, J., Hörnel, D.: Melonet: neural networks that learn harmony-based melodic variations. In: Proceedings of International Computer Music Conference, pp. 121–121. International Computer Music Association (1994)Google Scholar
  24. 24.
    Bell, C.: Algorithmic music composition using dynamic Markov chains and genetic algorithms. J. Comput. Sci. Coll. 27(2), 99–107 (2011)Google Scholar
  25. 25.
    Thywissen, K.: Genotator: an environment for exploring the application of evolutionary techniques in computer-assisted composition. Organised Sound 4(2), 127–133 (1999)CrossRefGoogle Scholar
  26. 26.
    Khalifa, Y., Khan, B.K., Begovic, J., Wisdom, A., Wheeler, A.M.: Evolutionary music composer integrating formal grammar. In: Proceedings of 9th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 2519–2526. ACM (2007)Google Scholar
  27. 27.
    Phon-Amnuaisuk, S., Tuson, A., Wiggins, G.: Evolving musical harmonisation. Artificial Neural Nets and Genetic Algorithms, pp. 229–234. Springer, Vienna (1999).  https://doi.org/10.1007/978-3-7091-6384-9_39 CrossRefGoogle Scholar
  28. 28.
    Gibson, P.M., Byrne, J.A.: Neurogen, musical composition using genetic algorithms and cooperating neural networks. In: Proceedings of 2nd International Conference on Artificial Neural Networks, pp. 309–313. IET (1991)Google Scholar
  29. 29.
    Chen, C.C.J., Miikkulainen, R.: Creating melodies with evolving recurrent neural networks. In: Neural Networks. In: International Joint Conference on Proceedings, IJCNN 2001, vol. 3, pp. 2241–2246. IEEE (2001)Google Scholar
  30. 30.
    Scirea, M., Togelius, J., Eklund, P., Risi, S.: MetaCompose: a compositional evolutionary music composer. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 202–217. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31008-4_14 CrossRefGoogle Scholar
  31. 31.
    Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 403–449. Springer, Boston (2013).  https://doi.org/10.1007/978-1-4614-6940-7_15 Google Scholar
  32. 32.
    Aguirre, H.E., Tanaka, K.: Selection, drift, recombination, and mutation in multiobjective evolutionary algorithms on scalable MNK-landscapes. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 355–369. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31880-4_25 CrossRefGoogle Scholar
  33. 33.
    MIDI Manufacturers Association: The complete MIDI 1.0 detailed specification: incorporating all recommended practices. MIDI Manufacturers Association (1996)Google Scholar
  34. 34.
    Wu, C.L., Liu, C.H., Ting, C.K.: A novel genetic algorithm considering measures and phrases for generating melody. In: Proceedings of 2014 IEEE Congress on Evolutionary Computation, pp. 2101–2107. IEEE (2014)Google Scholar
  35. 35.
    Toussaint, G.T.: Generating “good” musical rhythms algorithmically. In: Proceedings of 8th International Conference on Arts and Humanities, pp. 774–791. Honolulu, Hawaii (2010)Google Scholar
  36. 36.
    Toussaint, G.T., Matthews, L., Campbell, M., Brown, N.: Measuring musical rhythm similarity: transformation versus feature-based methods. J. Interdisc. Music Stud. 6, 23–53 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations