Skip to main content

Towards a General Framework for Artistic Style Transfer

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10783))

Abstract

In recent times, artificial intelligence has become more sophisticated when it comes to the creation of fine arts. Especially in the area of painting, artificial methods reached a new level of maturity in the process of replicating perceptual quality. These systems are able to separate style and content of given images, enabling them to recombine and mutate the facets to create novel content. This work defines a general framework for conducting artistic style transfer. This allows recombination and structured modification of state of the art algorithms for further investigation and profiling of artistic style transfer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The VGG-19 network by [15] was used.

  2. 2.

    https://keras.io, accessed 30.10.17.

  3. 3.

    https://www.tensorflow.org, accessed 30.10.17.

References

  1. Stork, D.G.: Computer vision and computer graphics analysis of paintings and drawings: an introduction to the literature. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 9–24. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03767-2_2

    Chapter  Google Scholar 

  2. Lombardi, T.E.: The classification of style in fine-art painting (2005). aAI3189084

    Google Scholar 

  3. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  4. Novak, R., Nikulin, Y.: Improving the neural algorithm of artistic style. CoRR abs/1605.04603 (2016). http://arxiv.org/abs/1605.04603

  5. Johnson, J., Alahi, A., Li, F.: Perceptual losses for real-time style transfer and super-resolution. CoRR abs/1603.08155 (2016). http://arxiv.org/abs/1603.08155

  6. Ashikhmin, M.: Synthesizing natural textures. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 217–226 (2001)

    Google Scholar 

  7. Lefebvre, S., Hoppe, H.: Parallel controllable texture synthesis. ACM Trans. Graph. 24(3), 777 (2005)

    Article  Google Scholar 

  8. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer, pp. 341–346 (2001). http://doi.acm.org/10.1145/383259.383296

  9. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, pp. 327–340 (2001)

    Google Scholar 

  10. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  11. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. ACM Trans. Graph. 24(3), 795 (2005)

    Article  Google Scholar 

  12. Elad, M., Milanfar, P.: Style-transfer via texture-synthesis. CoRR abs/1609.03057 (2016). http://arxiv.org/abs/1609.03057

  13. Frigo, O., Sabater, N., Delon, J., Hellier, P.: Split and match: example-based adaptive patch sampling for unsupervised style transfer. In: CVPR 2016, pp. 553–561 (2016)

    Google Scholar 

  14. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. CoRR abs/1508.06576 (2015). http://arxiv.org/abs/1508.06576

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

  16. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. CoRR abs/1505.07376 (2015). http://arxiv.org/abs/1505.07376

  17. Li, C., Wand, M.: Combining markov random fields and convolutional neural networks for image synthesis. In: CVPR 2016, p. 9 (2016)

    Google Scholar 

  18. Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. CoRR abs/1604.04382 (2016). http://arxiv.org/abs/1604.04382

  19. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: the missing ingredient for fast stylization. CoRR abs/1607.08022 (2016). http://arxiv.org/abs/1607.08022

  20. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. CoRR abs/1412.0035 (2014). http://arxiv.org/abs/1412.0035

  21. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8_2

    Chapter  Google Scholar 

  23. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut” - interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309 (2004)

    Article  Google Scholar 

  24. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures. ACM SIGGRAPH 2003 Papers on - SIGGRAPH 2003 22(3), 277 (2003)

    Google Scholar 

  25. O’Leary, D.P.: Robust regression computation using iteratively reweighted least squares. SIAM J. Matrix Anal. Appl. 11(3), 466–480 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Coleman, D., Holland, P., Kaden, N., Klema, V., Peters, S.C.: A system of subroutines for iteratively reweighted least squares computations. ACM Trans. Math. Softw. 6(3), 327–336 (1980)

    Article  MATH  Google Scholar 

  27. Pitie, F., Kokaram, A.: The linear Monge-Kantorovitch linear colour mapping for example-based colour transfer. In: IET 4th European Conference on Visual Media Production (CVMP 2007), p. 23 (2007)

    Google Scholar 

  28. Faridul, H.S., Pouli, T., Chamaret, C., Stauder, J., Reinhard, E., Kuzovkin, D., Tremeau, A.: Colour mapping: a review of recent methods. Extensions Appl. Comput. Graph. Forum 35(1), 59–88 (2016)

    Article  Google Scholar 

  29. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, pp. 1033–1038, September 1999

    Google Scholar 

  30. Broyden, C.G., Dennis, J.E., Moré, J.J.: On the local and superlinear convergence of quasi-newton methods. IMA J. Appl. Math. 12(3), 223–245 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1), 503–528 (1989). https://doi.org/10.1007/BF01589116

    Article  MathSciNet  MATH  Google Scholar 

  32. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: feed-forward synthesis of textures and stylized images. CoRR abs/1603.03417 (2016). http://arxiv.org/abs/1603.03417

  33. Chen, T.Q., Schmidt, M.: Fast patch-based style transfer of arbitrary style. CoRR abs/1612.04337 (2016). http://arxiv.org/abs/1612.04337

  34. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR abs/1703.10593 (2017). http://arxiv.org/abs/1703.10593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Uhde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uhde, F., Mostaghim, S. (2018). Towards a General Framework for Artistic Style Transfer. In: Liapis, A., Romero Cardalda, J., Ekárt, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2018. Lecture Notes in Computer Science(), vol 10783. Springer, Cham. https://doi.org/10.1007/978-3-319-77583-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77583-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77582-1

  • Online ISBN: 978-3-319-77583-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics