Advertisement

Generating Drum Rhythms Through Data-Driven Conceptual Blending of Features and Genetic Algorithms

  • Maximos Kaliakatsos-Papakostas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10783)

Abstract

Conceptual blending allows the emergence of new conceptual spaces by blending two input spaces. Using conceptual blending for inventing new concepts has been proven a promising technique for computational creativity. Especially in music, recent work has shown that proper representations of the input spaces allows the generation of consistent and sometimes surprising blends. The paper at hand proposes a novel approach to conceptual blending through the combination of higher-level features extracted from data; the field of application is drum rhythms. Through this methodology, the input rhythms are represented by 32 extracted features. After their generic space of similar features is computed, a simple amalgam-based methodology creates a blended set of an as equally as possible divided number of the most salient features from each input. This blended set of features acts as the target vector for a Genetic Algorithm that outputs the rhythm that best captures the blended features; this rhythm is called the blended rhythm. The salience of each feature in each rhythm in the database of input rhythms is computed from data and reflects the uniqueness of features. Preliminary results shed some light on how feature blending works on the generation of drum rhythms and new possible research directions for data-driven feature blending are proposed.

Keywords

Conceptual blending Drum rhythms Genetic algorithms 

References

  1. 1.
    Ait-Kaci, H., Podelski, A.: Towards a meaning of life. J. Logic Program. 16(3), 195–234 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boden, M.A.: Computer models of creativity. AI Mag. 30(3), 23 (2009)CrossRefGoogle Scholar
  3. 3.
    Confalonier, R., Schorlemmer, M., Plaza, E., Eppe, M., Kutz, O., Peñaloza, R.: Upward refinement for conceptual blending in description logic - an ASP-based approach and case study in EL\(^{++}\). In: 2015 International Workshop on Ontologies and Logic Programming for Query Answering, International Joint Conference on Artificial Intelligence (IJCAI) (2015)Google Scholar
  4. 4.
    Eigenfeldt, A., Pasquier, P.: Evolving structures for electronic dance music. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 319–326. ACM (2013)Google Scholar
  5. 5.
    Eppe, M., Confalonier, R., Maclean, E., Kaliakatsos-Papakostas, M., Cambouropoulos, E., Schorlemmer, M., Codescu, M., Kühnberger, K.U.: Computational invention of cadences and chord progressions by conceptual chord-blending. In: 2015 International Joint Conference on Artificial Intelligence (IJCAI) (2015)Google Scholar
  6. 6.
    Eppe, M., Maclean, E., Confalonieri, R., Kutz, O., Schorlemmer, M., Plaza, E.: ASP, amalgamation, and the conceptual blending workflow. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 309–316. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23264-5_26 CrossRefGoogle Scholar
  7. 7.
    Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2003). reprint editionGoogle Scholar
  8. 8.
    Goguen, J.: Mathematical models of cognitive space and time. In: Andler, D., Ogawa, Y., Okada, M., Watanabe, S. (eds.) Reasoning and Cognition. Interdisciplinary Conference Series on Reasoning Studies, vol. 2. Keio University Press (2006)Google Scholar
  9. 9.
    Goguen, J., Harrell, D.F.: Style: a computational and conceptual blending-based approach. In: Argamon, S., Dubnov, S. (eds.) The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning, pp. 291–316. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-12337-5_12 CrossRefGoogle Scholar
  10. 10.
    Hedblom, M.M., Kutz, O., Neuhaus, F.: Image schemas in computational conceptual blending. Cogn. Syst. Res. 39, 42–57 (2016)CrossRefGoogle Scholar
  11. 11.
    Kaliakatsos-Papakostas, M., Confalonier, R., Corneli, J., Zacharakis, A., Cambouropoulos, E.: An argument-based creative assistant for harmonic blending. In: Proceedings of the 7th International Conference on Computational Creativity (ICCC) (2016)Google Scholar
  12. 12.
    Kaliakatsos–Papakostas, M.A., Floros, A., Vrahatis, M.N.: evoDrummer: deriving rhythmic patterns through interactive genetic algorithms. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 25–36. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36955-1_3 CrossRefGoogle Scholar
  13. 13.
    Kaliakatsos-Papakostas, M.A., Floros, A., Vrahatis, M.N., Kanellopoulos, N.: Genetic evolution of L and FL-systems for the production of rhythmic sequences. In: Proceedings of the 2nd Workshop in Evolutionary Music (GECCO 2012), Philadelphia, USA, pp. 461–468, 7–11 July 2012Google Scholar
  14. 14.
    Kaliakatsos-Papakostas, M., Makris, D., Zacharakis, A., Tsougras, C., Cambouropoulos, E.: Learning and blending harmonies in the context of a melodic harmonisation assistant. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 520–527. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44944-9_46 CrossRefGoogle Scholar
  15. 15.
    Kaliakatsos-Papakostas, M., Queiroz, M., Tsougras, C., Cambouropoulos, E.: Conceptual blending of harmonic spaces for creative melodic harmonisation. J. New Music Res. 46(4), 305–328 (2017)CrossRefGoogle Scholar
  16. 16.
    Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)CrossRefzbMATHGoogle Scholar
  17. 17.
    Milne, A.J., Dean, R.T.: Computational creation and morphing of multilevel rhythms by control of evenness. Comput. Music J. 40(1), 35–53 (2016)CrossRefGoogle Scholar
  18. 18.
    Neuhaus, F., Kutz, O., Codescu, M., Mossakowski, T.: Fabricating monsters is hard: towards the automation of conceptual blending. In: Proceedings of the Workshop Computational Creativity, Concept Invention, and General Intelligence (C3GI 2014), August 2014Google Scholar
  19. 19.
    Nuanáin, C.O., Herrera, P., Jorda, S.: Target-based rhythmic pattern generation and variation with genetic algorithms. In: Sound and Music Computing Conference (2015)Google Scholar
  20. 20.
    Schorlemmer, M., Smaill, A., Kühnberger, K.U., Kutz, O., Colton, S., Cambouropoulos, E., Pease, A.: COINVENT: Towards a computational concept invention theory. In: 5th International Conference on Computational Creativity (ICCC) 2014, June 2014Google Scholar
  21. 21.
    Sioros, G., Guedes, C.: Complexity driven recombination of midi loops. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), pp. 381–386. University of Miami, Miami, October 2011Google Scholar
  22. 22.
    Tsougras, C., Stefanou, D.: Conceptual blending and meaning construction: a structural/hermeneutical analysis of the ‘old castle’ from musorgsky’s ‘pictures at an exhibition’. In: Proceedings of the 9th Triennial Conference of the European Society for the Cognitive Science of Music (ESCOM) (2015)Google Scholar
  23. 23.
    Vogl, R., Leimeister, M., Nuanáin, C.Ó., Jordà, S., Hlatky, M., Knees, P.: An intelligent interface for drum pattern variation and comparative evaluation of algorithms. J. Audio Eng. Soc. 64(7/8), 503–513 (2016)CrossRefGoogle Scholar
  24. 24.
    Zacharakis, A., Kaliakatsos-Papakostas, M., Cambouropoulos, E.: Conceptual blending in music cadences: a formal model and subjective evaluation. In: Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR 2015), Malaga, Spain (2015)Google Scholar
  25. 25.
    Zacharakis, A., Kaliakatsos-Papakostas, M., Tsougras, C., Cambouropoulos, E.: Creating musical cadences via conceptual blending: empirical evaluation and enhancement of a formal model. Music Percept. Interdisc. J. 35(2), 211–234 (2017)CrossRefGoogle Scholar
  26. 26.
    Zbikowski, L.M.: Conceptualizing Music: Cognitive Structure, Theory, and Analysis. Oxford University Press, New York (2002)CrossRefGoogle Scholar
  27. 27.
    Zbikowski, L.M.: Metaphor and music. In: The Cambridge Handbook of Metaphor and Thought, pp. 502–524 (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Music StudiesAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations