Abstract
The nonlinear response for systems exhibiting Markovian stochastic dynamics is calculated using time-dependent perturbation theory for the Green’s function, the conditional probability to find the system in a given configuration at a certain time given it was in another configuration at an earlier time. In general, the Green’s function obeys a so-called master-equation for the balance of the gain and loss of probability in the various configurations of the system. Using various models for the reorientational motion of molecules it is found that the scaled modulus of the third-order response, \(X_3\), shows a hump-like behavior for random rotational motion in some cases and it exhibits “trivial” behavior, a monotonuos decay from a finite zero-frequency value to a vanishing high-frequency limit, if the model of isotropic rotational diffusion is considered. For the time-honored model of dipole reorientations in an asymmetric double-well potential, it is found that \(X_3\) exhibits a peak in a certain temperature range around a characteristic temperature at which the zero-frequency limit vanishes. The fifth-order modulus \(X_5\) shows hump-like behavior in two distinct temperature regimes located at temperatures, where \(X_3\) behaves trivially. For a trap model with a Gaussian density of states, a model that exhibits some features of glassy relaxation, both nonlinear response functions can exhibit either trivial or hump-like behavior depending on the specific choice for some model parameters. The height of the peak shows various temperature dependencies from increasing with temperature, decreasing or a temperature-independent behavior.
Keywords
- Nonlinear dielectric relaxation
- Stochastic models
- Molecular reorientations
- Asymmetric double-well potential model
- Trap model
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
F. Kremer, A.E. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)
P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000)
R. Richert, Adv. Chem. Phys. 156, 101 (2014)
R. Böhmer, R. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S. Kübler, R. Richert, B. Schiener, H. Sillescu, H. Spiess, U. Tracht, M. Wilhelm, J. Non-Cryst, Solids 235–237, 1 (1998)
M. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)
E.V. Russell, N.E. Israeloff, Nature 408, 695 (2000)
R. Richert, J. Phys.: Cond. Matter 14, R703 (2002)
K. Schmidt-Rohr, H. Spiess, Phys. Rev. Lett. 66, 3020 (1991)
A. Heuer, M. Wilhelm, H. Zimmermann, H. Spiess, Phys. Rev. Lett. 75, 2851 (1995)
R. Böhmer, G. Hinze, G. Diezemann, B. Geil, H. Sillescu, Europhys. Lett. 36, 55 (1996)
B. Schiener, R. Böhmer, A. Loidl, R. Chamberlin, Science 274, 752 (1996)
B. Schiener, R. Chamberlin, G. Diezemann, R. Böhmer, J. Chem. Phys. 107, 7746 (1997)
R.V. Chamberlin, Phys. Rev. Lett. 83, 5134 (1999)
X. Shi, G.B. McKenna, Phys. Rev. B 73, 1 (2006)
J. Bouchaud, G. Biroli, Phys. Rev. B 72, 064204 (2005)
R. Richert, J. Phys.: Cond. Matter 29, 363001 (2017)
C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hote, G. Biroli, J.-P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)
C. Brun, F. Ladieu, D. L’Hote, M. Tarzia, G. Biroli, J.P. Bouchaud, Phys. Rev. B 84, 104204 (2011)
R. Richert, S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006)
S. Weinstein, R. Richert, Phys. Rev. B 75, 064302 (2007)
S. Rzoska, A. Drozd-Rzoska, J. Phys.: Cond. Matter 24, 035101 (2012)
M. Tarzia, G. Biroli, A. Lefevre, J.-P. Bouchaud, J. Chem. Phys. 132, 054501 (2010)
F. Ladieu, C. Brun, D. L’hôte, Phys. Rev. B 85, 184207 (2012)
U. Buchenau, J. Chem. Phys. 146 (2017)
J. Dejardin, Y. Kalmykov, Phys. Rev. E 61, 1211 (2000)
S. Albert, T. Bauer, M. Michl, G. Biroli, J.P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Science 352, 1308 (2016)
G. Diezemann, Phys. Rev. E 85, 051502 (2012)
G. Diezemann, Phys. Rev. E 96, 022150 (2017)
A. Morita, Phys. Rev. A 34, 1499 (1986)
J. Dejardin, G. Debiais, Adv. Chem. Phys. 91, 241 (1995)
Y. Kalmykov, Phys. Rev. E 65, 021101 (2001)
P.M. Déjardin, F. Ladieu, J. Chem. Phys. 140, 034506 (2014)
N. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)
H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989)
G. Gardiner, Handbook of Statistical Methods for Physics, Chemistry and Natural Sciences (Springer, Berlin, 1997)
D.T. Gillespie, Markov Processes (Academic Press, San Diego, 1992)
G. Diezemann, H. Sillescu, J. Chem. Phys. 111, 1126 (1999)
R. Böhmer, G. Diezemann, G. Hinze, E.A. Roessler, Prog. Nucl. Magn. Reson. Spectrosc. 39, 191 (2001)
A. Kivelson, S. Kivelson, J. Chem. Phys. 90, 4464 (1989)
L. Alessi, L. Andreozzi, M. Faetti, D. Liporini, J. Chem. Phys. 114, 3631 (2001)
G. Diezemann, J. Chem. Phys. 107, 10112 (1997)
G. Diezemann, H. Sillescu, G. Hinze, R. Böhmer, Phys. Rev. E 57, 4398 (1998)
G. Diezemann, R. Böhmer, G. Hinze, H. Sillescu, J. Non-Cryst, Solids 235–237, 121 (1998)
R. Böhmer, G. Diezemann, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)
K. Schulten, Z. Schulten, A. Szabo, J. Chem. Phys. 74, 4426 (1981)
J. Dyre, Phys. Rev. B 51, 12276 (1995)
C. Monthus, J. Bouchaud, J. Phys. A: Math. Gen. 29, 3847 (1996)
R. Denny, D. Reichman, J. Bouchaud, Phys. Rev. Lett. 90, 025503 (2003)
G. Diezemann, J. Phys.: Cond. Mat. 19, 205107 (2007)
C. Rehwald, N. Gnan, A. Heuer, T. Schrøder, J. Dyre, G. Diezemann. Phys. Rev. E 82, 021503 (2010)
A. Heuer, J. Phys.: Cond. Matter 20, 373101 (2008)
N. Agmon, J. Hopfield, J. Chem. Phys. 78, 6947 (1983)
G. Diezemann, Europhys. Lett. 53, 604 (2001)
A. Crisanti, F. Ritort, J. Phys. A: Math. Gen. 36, R181 (2003)
G. Diezemann, Phys. Rev. E 72, 011104 (2005)
S. Fielding, P. Sollich, Phys. Rev. Lett. 88, 050603 (2002)
Acknowledgements
Useful discussions with Roland Böhmer, Gerald Hinze, Francois Ladieu, and Jeppe Dyre are gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Diezemann, G. (2018). Stochastic Models of Higher Order Dielectric Responses. In: Richert, R. (eds) Nonlinear Dielectric Spectroscopy. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-77574-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-77574-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77573-9
Online ISBN: 978-3-319-77574-6
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)