On the Automatic Design of a Representation for Grammar-Based Genetic Programming

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10781)

Abstract

A long-standing problem in Evolutionary Computation consists in how to choose an appropriate representation for the solutions. In this work we investigate the feasibility of synthesizing a representation automatically, for the large class of problems whose solution spaces can be defined by a context-free grammar. We propose a framework based on a form of meta-evolution in which individuals are candidate representations expressed with an ad hoc language that we have developed to this purpose. Individuals compete and evolve according to an evolutionary search aimed at optimizing such representation properties as redundancy, locality, uniformity of redundancy.

We assessed experimentally three variants of our framework on established benchmark problems and compared the resulting representations to human-designed representations commonly used (e.g., classical Grammatical Evolution). The results are promising in the sense that the evolved representations indeed exhibit better properties than the human-designed ones. Furthermore, while those improved properties do not result in a systematic improvement of search effectiveness, some of the evolved representations do improve search effectiveness over the human-designed baseline.

Keywords

Genotype-phenotype mapping Grammatical evolution Meta-evolution 

References

  1. 1.
    Altenberg, L.: Probing the axioms of evolutionary algorithm design: commentary on “On the mapping of genotype to phenotype in evolutionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclaurin. Genet. Program. Evolvable Mach. 18(3), 363–367 (2017)CrossRefGoogle Scholar
  2. 2.
    Castelli, M., Manzoni, L., Vanneschi, L., Silva, S., Popovič, A.: Self-tuning geometric semantic genetic programming. Genet. Program. Evolvable Mach. 17(1), 55–74 (2016)CrossRefGoogle Scholar
  3. 3.
    Correia, M.B.: A study of redundancy and neutrality in evolutionary optimization. Evol. Comput. 21(3), 413–443 (2013)CrossRefGoogle Scholar
  4. 4.
    Cruz-Salinas, A.F., Perdomo, J.G.: Self-adaptation of genetic operators through genetic programming techniques. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 913–920. ACM, New York (2017)Google Scholar
  5. 5.
    De Jong, K.: Parameter setting in EAs: a 30 year perspective. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, pp. 1–18. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69432-8_1 Google Scholar
  6. 6.
    Fogel, D.B., Fogel, L.J., Atmar, J.W.: Meta-evolutionary programming. In: 1991 Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, pp. 540–545. IEEE (1991)Google Scholar
  7. 7.
    Foster, J.A.: Taking “biology” just seriously enough: commentary on “On the mapping of genotype to phenotype in evolutionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclaurin. Genet. Program. Evolvable Mach. 18(3), 395–398 (2017)CrossRefGoogle Scholar
  8. 8.
    Hong, L., Drake, J.H., Woodward, J.R., Özcan, E.: A hyper-heuristic approach to automated generation of mutation operators for evolutionary programming. Appl. Soft Comput. 62, 162–175 (2018)CrossRefGoogle Scholar
  9. 9.
    Lourenço, N., Pereira, F.B., Costa, E.: SGE: a structured representation for grammatical evolution. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 136–148. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31471-6_11 Google Scholar
  10. 10.
    Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3–4), 365–396 (2010)CrossRefGoogle Scholar
  11. 11.
    Medvet, E.: A comparative analysis of dynamic locality and redundancy in grammatical evolution. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 326–342. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55696-3_21 CrossRefGoogle Scholar
  12. 12.
    Medvet, E.: Hierarchical grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO (2017)Google Scholar
  13. 13.
    Medvet, E., Bartoli, A., Squillero, G.: An effective diversity promotion mechanism in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 247–248. ACM, New York (2017)Google Scholar
  14. 14.
    Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 977–984. ACM, New York (2017)Google Scholar
  15. 15.
    Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in Cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)CrossRefGoogle Scholar
  16. 16.
    O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: \(\pi \)Grammatical evolution. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 617–629. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24855-2_70 CrossRefGoogle Scholar
  17. 17.
    O’Neill, M., Ryan, C.: Genetic code degeneracy: implications for grammatical evolution and beyond. In: Floreano, D., Nicoud, J.-D., Mondada, F. (eds.) ECAL 1999. LNCS (LNAI), vol. 1674, pp. 149–153. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48304-7_21 CrossRefGoogle Scholar
  18. 18.
    O’Neill, M., Ryan, C.: Grammatical evolution by grammatical evolution: the evolution of grammar and genetic code. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 138–149. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24650-3_13 CrossRefGoogle Scholar
  19. 19.
    Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evol. Comput. 5(4), 401–418 (1997)CrossRefGoogle Scholar
  20. 20.
    Pappa, G.L., Ochoa, G., Hyde, M.R., Freitas, A.A., Woodward, J., Swan, J.: Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genet. Program. Evolvable Mach. 15(1), 3–35 (2014)CrossRefGoogle Scholar
  21. 21.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)CrossRefGoogle Scholar
  22. 22.
    Rothlauf, F.: Representations for genetic and evolutionary algorithms. In: Rothlauf, F. (ed.) Representations for Genetic and Evolutionary Algorithms, pp. 9–32. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-32444-5_2 CrossRefGoogle Scholar
  23. 23.
    Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evol. Comput. 11(4), 381–415 (2003)CrossRefGoogle Scholar
  24. 24.
    Ryan, C.: A rebuttal to Whigham, Dick, and Maclaurin by one of the inventors of grammatical evolution: commentary on “On the mapping of genotype to phenotype in evolutionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclaurin. Genet. Program. Evolvable Mach. 18, 385–389 (2017)CrossRefGoogle Scholar
  25. 25.
    Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055930 CrossRefGoogle Scholar
  26. 26.
    Saravanan, N., Fogel, D.B., Nelson, K.M.: A comparison of methods for self-adaptation in evolutionary algorithms. BioSystems 36(2), 157–166 (1995)CrossRefGoogle Scholar
  27. 27.
    Scott, E.O., Bassett, J.K.: Learning genetic representations for classes of real-valued optimization problems. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1075–1082. ACM (2015)Google Scholar
  28. 28.
    Simões, L.F., Izzo, D., Haasdijk, E., Eiben, A.E.: Self-adaptive genotype-phenotype maps: neural networks as a meta-representation. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 110–119. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_11 Google Scholar
  29. 29.
    Spector, L.: Introduction to the peer commentary special section on “On the mapping of genotype to phenotype in evolutionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclaurin. Genet. Program. Evolvable Mach. 18(3), 351–352 (2017)CrossRefGoogle Scholar
  30. 30.
    Squillero, G., Tonda, A.: (over-)realism in evolutionary computation: commentary on “On the mapping of genotype to phenotype in evolutionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclaurin. Genet. Program. Evolvable Mach. 18, 391–393 (2017)CrossRefGoogle Scholar
  31. 31.
    Thorhauer, A.: On the non-uniform redundancy in grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 292–302. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_27 CrossRefGoogle Scholar
  32. 32.
    Thorhauer, A., Rothlauf, F.: On the locality of standard search operators in grammatical evolution. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 465–475. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_46 Google Scholar
  33. 33.
    Vanneschi, L., Castelli, M., Manzoni, L.: The K landscapes: a tunably difficult benchmark for genetic programming. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1467–1474. ACM (2011)Google Scholar
  34. 34.
    Whigham, P.A., Dick, G., Maclaurin, J.: On the mapping of genotype to phenotype in evolutionary algorithms. Genet. Program. Evolvable Mach. 18, 353–361 (2017)CrossRefGoogle Scholar
  35. 35.
    Whigham, P.A., Dick, G., Maclaurin, J., Owen, C.A.: Examining the best of both worlds of grammatical evolution. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1111–1118. ACM (2015)Google Scholar
  36. 36.
    Whigham, P.A., et al.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, vol. 16, pp. 33–41 (1995)Google Scholar
  37. 37.
    White, D.R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)CrossRefGoogle Scholar
  38. 38.
    Wong, P.-K., Wong, M.-L., Leung, K.-S.: Hierarchical knowledge in self-improving grammar-based genetic programming. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 270–280. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_25 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly

Personalised recommendations