Advertisement

Towards in Vivo Genetic Programming: Evolving Boolean Networks to Determine Cell States

  • Nadia S. Taou
  • Michael A. LonesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10781)

Abstract

Within the genetic programming community, there has been growing interest in the use of computational representations motivated by gene regulatory networks (GRNs). It is thought that these representations capture useful biological properties, such as evolvability and robustness, and thereby support the evolution of complex computational behaviours. However, computational evolution of GRNs also opens up opportunities to go in the opposite direction: designing programs that could one day be implemented in biological cells. In this paper, we explore the ability of evolutionary algorithms to design Boolean networks, abstract models of GRNs suitable for refining into synthetic biology implementations, and show how they can be used to control cell states within a range of executable models of biological systems.

Keywords

Gene regulatory networks Boolean networks Control Evolutionary algorithms 

References

  1. 1.
    Reil, T.: Dynamics of gene expression in an artificial genome — implications for biological and artificial ontogeny. In: Floreano, D., Nicoud, J.-D., Mondada, F. (eds.) ECAL 1999. LNCS (LNAI), vol. 1674, pp. 457–466. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48304-7_63 CrossRefGoogle Scholar
  2. 2.
    Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice, Genetic Programming Series, vol. 6, pp. 43–61. Springer, Boston (2003).  https://doi.org/10.1007/978-1-4419-8983-3_4 CrossRefGoogle Scholar
  3. 3.
    Lones, M.A.: Computing with artificial gene regulatory networks. In: Iba, H., Noman, N. (eds.) Evolutionary Algorithms in Gene Regulatory Network Research, pp. 398–424. Wiley (2016).  https://doi.org/10.1002/9781119079453.ch15
  4. 4.
    Sanchez, S., Cussat-Blanc, S.: Gene regulated car driving: using a gene regulatory network to drive a virtual car. Genet. Program Evolvable Mach. 15(4), 477–511 (2014).  https://doi.org/10.1007/s10710-014-9228-y CrossRefGoogle Scholar
  5. 5.
    Lones, M.A., Turner, A.P., Fuente, L.A., Stepney, S., Caves, L.S.D., Tyrrell, A.M.: Biochemical connectionism. Nat. Comput. 12(4), 453–472 (2013).  https://doi.org/10.1007/s11047-013-9400-y MathSciNetCrossRefGoogle Scholar
  6. 6.
    Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: Evolution and analysis of a robot controller based on a gene regulatory network. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 61–72. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15323-5_6 CrossRefGoogle Scholar
  7. 7.
    Lienert, F., Lohmueller, J.J., Garg, A., Silver, P.A.: Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol. 15(2), 95–107 (2014)CrossRefGoogle Scholar
  8. 8.
    Singh, V.: Recent advances and opportunities in synthetic logic gates engineering in living cells. Syst. Synth. Biol. 8(4), 271–282 (2014)CrossRefGoogle Scholar
  9. 9.
    Veliz-Cuba, A., Arthur, J., Hochstetler, L., Klomps, V., Korpi, E.: On the relationship of steady states of continuous and discrete models arising from biology. Bull. Math. Biol. 74(12), 2779–2792 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Saadatpour, A., Albert, R.: Boolean modeling of biological regulatory networks: a methodology tutorial. Methods 62(1), 3–12 (2013)CrossRefGoogle Scholar
  11. 11.
    Cury, J.E., Baldissera, F.L.: Systems biology, synthetic biology and control theory: a promising golden braid. Annu. Rev. Control 37(1), 57–67 (2013)CrossRefGoogle Scholar
  12. 12.
    Huang, S., Ernberg, I., Kauffman, S.: Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 20, 869–876 (2009). ElsevierCrossRefGoogle Scholar
  13. 13.
    Motter, A.E.: Networkcontrology: Chaos: an Interdisciplinary. J. Nonlinear Sci. 25(9), 097621 (2015)MathSciNetGoogle Scholar
  14. 14.
    Fornasini, E., Valcher, M.E.: Recent developments in Boolean networks control. J. Control Decis. 3(1), 1–18 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Akutsu, T., Hayashida, M., Ching, W.K., Ng, M.K.: Control of Boolean networks: hardness results and algorithms for tree structured networks. J. Theoret. Biol. 244(4), 670–679 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Taou, N.S., Corne, D.W., Lones, M.A.: Evolving Boolean networks for biological control: state space targeting in scale free Boolean networks. In: 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2016).  https://doi.org/10.1109/CIBCB.2016.7758125
  17. 17.
    Taou, N.S., Corne, D.W., Lones, M.A.: Towards intelligent biological control: controlling Boolean networks with Boolean networks. In: European Conference on the Applications of Evolutionary Computation, pp. 351–362 (2016).  https://doi.org/10.1007/978-3-319-31204-0_23
  18. 18.
    Kauffman, S.A.: The Origins of Order: Self Organization and Selection in Evolution. Oxford University Press, New York (1993)Google Scholar
  19. 19.
    Drossel, B.: Random Boolean networks. In: Schuster, H.G. (ed.) Reviews of Nonlinear Dynamics and Complexity, pp. 69–110 (2008).  https://doi.org/10.1002/9783527626359.ch3
  20. 20.
    Huang, S., Eichler, G., Bar-Yam, Y., Ingber, D.E.: Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94(12), 128701 (2005)CrossRefGoogle Scholar
  21. 21.
    Mendoza, L., Xenarios, I.: A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor. Biol. Med. Model. 3(1), 13 (2006)CrossRefGoogle Scholar
  22. 22.
    Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinf. 7(1), 56 (2006)CrossRefGoogle Scholar
  23. 23.
    Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2), e1672 (2008)CrossRefGoogle Scholar
  24. 24.
    Alvarez-Buylla, E.R., Chaos, Á., Aldana, M., Benítez, M., Cortes-Poza, Y., Espinosa-Soto, C., Hartasánchez, D.A., Lotto, R.B., Malkin, D., Santos, G.J.E., et al.: Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS ONE 3(11), e3626 (2008)CrossRefGoogle Scholar
  25. 25.
    Mendoza, L., Thieffry, D., Alvarez-Buylla, E.R.: Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15(7), 593–606 (1999). Oxford, EnglandCrossRefGoogle Scholar
  26. 26.
    Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Nat. Acad. Sci. U.S.A. 101(14), 4781–4786 (2004)CrossRefGoogle Scholar
  27. 27.
    Goudarzi, A., Teuscher, C., Gulbahce, N., Rohlf, T.: Emergent criticality through adaptive information processing in Boolean networks. Phys. Rev. Lett. 108(12), 128702 (2012)CrossRefGoogle Scholar
  28. 28.
    François, P., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. Proc. Nat. Acad. Sci. U.S.A. 101(2), 580–585 (2004)CrossRefGoogle Scholar
  29. 29.
    Noman, N., Monjo, T., Moscato, P., Iba, H.: Evolving robust gene regulatory networks. PLoS ONE 10(1), e0116258 (2015)CrossRefGoogle Scholar
  30. 30.
    Garcia-Bernardo, J., Eppstein, M.J.: Evolving modular genetic regulatory networks with a recursive, top-down approach. Syst. Synth. Biol. 9(4), 179–189 (2015)CrossRefGoogle Scholar
  31. 31.
    Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: Image compression of natural images using artificial gene regulatory networks. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 595–602. ACM, New York (2010).  https://doi.org/10.1145/1830483.1830593
  32. 32.
    Cussat-Blanc, S., Harrington, K., Pollack, J.: Gene regulatory network evolution through augmenting topologies. IEEE Trans. Evol. Comput. 19(6), 823–837 (2015)CrossRefGoogle Scholar
  33. 33.
    Turner, A.J., Miller, J.F.: Recurrent Cartesian genetic programming of artificial neural networks. Genet. Program Evolvable Mach. 18(2), 185–212 (2017)CrossRefGoogle Scholar
  34. 34.
    Roli, A., Manfroni, M., Pinciroli, C., Birattari, M.: On the design of Boolean network robots. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011. LNCS, vol. 6624, pp. 43–52. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20525-5_5 CrossRefGoogle Scholar
  35. 35.
    Timmis, J., Alden, K., Andrews, P., Clark, E., Nellis, A., Naylor, B., Coles, M., Kaye, P.: Building confidence in quantitative systems pharmacology models: an engineer’s guide to exploring the rationale in model design and development. CPT Pharmacometrics Syst. Pharmacol. 6(3), 156–167 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical and Computer SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations