Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016). https://doi.org/10.1109/TEVC.2015.2504420
CrossRef
Google Scholar
Vega, R., Sajed, T., Mathewson, K.W., Khare, K., Pilarski, P.M., Greiner, R., Sanchez-Ante, G., Antelis, J.M.: Assessment of feature selection and classification methods for recognizing motor imagery tasks from electroencephalographic signals. Artif. Intell. Res. 1, 37–51 (2016). https://doi.org/10.5430/air.v6n1p37
Google Scholar
Cabrera, A.F., Farina, D., Dremstrup, K.: Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery. Med. Biol. Eng. Compu. 48(2), 123–132 (2010). https://doi.org/10.1007/s11517-009-0569-2
CrossRef
Google Scholar
Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 6, 1–9 (2012). https://doi.org/10.3389/fnins.2012.00039
CrossRef
Google Scholar
Alotaiby, T., El-Samie, F.E.A., Alshebeili, S.A., Ahmad, I.: A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015(1), 66 (2015). https://doi.org/10.1186/s13634-015-0251-9
CrossRef
Google Scholar
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). https://doi.org/10.1145/584091.584093. (July 1928)
MathSciNet
CrossRef
MATH
Google Scholar
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005). https://doi.org/10.1109/TPAMI.2005.159
CrossRef
Google Scholar
Ciaccio, E.J., Dunn, S.M., Akay, M.: Biosignal pattern recognition and interpretation systems: Part 2 of 4: methods for feature extraction and selection. IEEE Eng. Med. Biol. Mag. 12, 106–113 (1993). https://doi.org/10.1109/51.248173
CrossRef
Google Scholar
Rejer, I.: Genetic algorithm with aggressive mutation for feature selection in BCI feature space. Pattern Anal. Appl. 18(3), 485–492 (2014). https://doi.org/10.1007/s10044-014-0425-3
MathSciNet
CrossRef
Google Scholar
Wei, Q., Wang, Y.: Binary multi-objective particle swarm optimization for channel selection in motor imagery based brain-computer interfaces. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BME I), pp. 667–670 (2011). https://doi.org/10.3233/BME-151451
Atyabi, A., Luerssen, M., Fitzgibbon, S.P., Powers, D.M.W.: Use of evolutionary algorithm-based methods in EEG based BCI systems. In: Swarm Intelligence for Electric and Electronic Engineering, pp. 326–344 (2012). https://doi.org/10.4018/978-1-4666-2666-9.ch016
Gan, J.Q., Hasan, B.A.S., Tsui, C.S.L.: A filter-dominating hybrid sequential forward floating search method for feature subset selection in high-dimensional space. Int. J. Mach. Learn. Cybern. 5(3), 413–423 (2014). https://doi.org/10.1007/s13042-012-0139-z
CrossRef
Google Scholar
Khushaba, R.N., Al-Ani, A., AlSukker, A., Al-Jumaily, A.: A combined ant colony and differential evolution feature selection algorithm. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 1–12. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87527-7_1
CrossRef
Google Scholar
Tan, F., Fu, X., Zhang, Y., Bourgeois, A.G.: A genetic algorithm-based method for feature subset selection. Soft. Comput. 12(2), 111–120 (2008). https://doi.org/10.1007/s00500-007-0193-8
CrossRef
Google Scholar
Ali, S.I., Shahzad, W.: A feature subset selection method based on symmetric uncertainty and Ant Colony Optimization. In: 2012 International Conference on Emerging Technologies, pp. 1–6 (2012). https://doi.org/10.1109/ICET.2012.6375420
Nguyen, H.B., Xue, B., Liu, I., Zhang, M.: Filter based backward elimination in wrapper based PSO for feature selection in classification. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, pp. 3111–3118 (2014). https://doi.org/10.1109/CEC.2014.6900657
Zhu, Z., Jia, S., Ji, Z.: Towards a memetic feature selection paradigm. IEEE Comput. Intell. Mag. 5(2), 41–53 (2010). https://doi.org/10.1109/MCI.2010.936311
CrossRef
Google Scholar
Lourenco, H.R., Martin, O.C., Stutzle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 363–397. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_12
Google Scholar
Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.024
CrossRef
Google Scholar
Lotte, F., Congedo, M., Anatole, L., Lotte, F., Congedo, M., Anatole, L.: A Review of Classification Algorithms for EEG-based BCI (2007). https://doi.org/10.1088/1741-2560/4/2/R01
Ramos, A.C., Vellasco, M.: Feature selection methods applied to motor imagery task classification. In: 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (2016). https://doi.org/10.1109/LA-CCI.2016.7885731, ISBN 9781509051052
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Articial Intelligence (IJCAI), vol. 5, pp. 1–7 (1995). https://doi.org/10.1067/mod.2000.109031, ISBN 1-55860-363-8
Lan, T., Erdogmus, D., Adami, A., Pavel, M., Mathan, S.: Salient EEG channel selection in brain computer interfaces by mutual information maximization. In: Conference proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 7, pp. 7064–7067. IEEE Engineering in Medicine and Biology Society (2005). https://doi.org/10.1109/IEMBS.2005.1616133