Advertisement

Toward the Online Visualisation of Algorithm Performance for Parameter Selection

  • David J. Walker
  • Matthew J. Craven
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10784)

Abstract

A visualisation method is presented that is intended to assist evolutionary algorithm users with the parametrisation of their algorithms. The visualisation method presents the convergence and diversity properties such that different parametrisations can be easily compared, and poor performing parameter sets can be easily identified and discarded. The efficacy of the visualisation is presented using a set of benchmark optimisation problems from the literature, as well as a benchmark water distribution network design problem. Results show that it is possible to observe the different performance caused by different parametrisations. Future work discusses the potential of this visualisation within an online tool that will enable a user to discard poor parametrisations as they execute to free up resources for better ones.

Keywords

Visualisation Multi-objective Optimisation Water distribution network design 

References

  1. 1.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of IEEE Congress on Evolutionary Computation, vol. 1, pp. 825–830, May 2002Google Scholar
  2. 2.
    Bhattacharjee, K.S., Singh, H.K., Ryan, M., Ray, T.: Bridging the gap: many-objective optimization and informed decision-making. IEEE Trans. Evol. Comput. 21(5), 813–820 (2017)CrossRefGoogle Scholar
  3. 3.
    Walker, D.J., Everson, R.M., Fieldsend, J.E.: Visualising mutually non-dominating solution sets in many-objective optimization. IEEE Trans. Evol. Comput. 17(2), 165–184 (2013)CrossRefGoogle Scholar
  4. 4.
    Craven, M.J., Jimbo, H.C.: EA stability visualization: perturbations, metrics and performance. In: Proceedings of Visualisation in Genetic and Evolutionary Computation (VizGEC 2014), Held at GECCO 2014 (2014)Google Scholar
  5. 5.
    Polheim, H.: Visualization of evolutionary algorithms - set of standard techniques and multidimensional visualization. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 533–540 (1999)Google Scholar
  6. 6.
    Kerren, A., Egger, T.: EAVis: a visualisation tool for evolutionary algorithms. In: Proceedings of 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 299–301 (2005)Google Scholar
  7. 7.
    Hart, E., Ross, P.: GAVEL - a new tool for genetic algorithm visualization. IEEE Trans. Evol. Comput. 5(4), 335–348 (2001)CrossRefGoogle Scholar
  8. 8.
    Keedwell, E., Johns, M., Savić, D.: Spatial and temporal visualisation of evolutionary algorithm decisions in water distribution network optimisation. In: GECCO Companion 2015 Proceedings of Visualisation in Genetic and Evolutionary Computation (VizGEC 2015) Held at GECCO 2015, pp. 941–948 (2015)Google Scholar
  9. 9.
    Burlacu, B., Affenzeller, M., Kommenda, M., Winkler, S., Kronberger, G.: Visualization of genetic lineages and inheritance information in genetic programming. In: GECCO Companion 2013 Proceedings of Visualisation in Genetic and Evolutionary Computation (VizGEC 2013) Held at GECCO 2013, pp. 1351–1358 (2013)Google Scholar
  10. 10.
    Fleischer, M.: The measure of Pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36970-8_37 CrossRefGoogle Scholar
  11. 11.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  12. 12.
    Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 231–240. Springer, London (1998).  https://doi.org/10.1007/978-1-4471-0427-8_25 CrossRefGoogle Scholar
  13. 13.
    Garza-Fabre, M., Toscano-Pulido, G., Coello, C.: Two novel approaches for many-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 4480–4487, July 2010Google Scholar
  14. 14.
    Schaake, J., Lai, D.: Linear programming and dynamic programming application to water distribution network design. Technical report. MIT (1969)Google Scholar
  15. 15.
    Walker, D.J., Keedwell, E., Savić, D.: Multi-objective optimisation of a water distribution network with a sequence-based selection hyper-heuristic. In: Proceedings of Computing and Control in the Water Industry (CCWI 2016) (2016)Google Scholar
  16. 16.
    Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of ExeterExeterUK
  2. 2.University of PlymouthPlymouthUK

Personalised recommendations