Skip to main content

Evolving a TORCS Modular Fuzzy Driver Using Genetic Algorithms

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10784)

Abstract

This work presents an evolutionary approach to optimize the parameters of a Fuzzy-based autonomous driver for the open simulated car racing game (TORCS). Using evolutionary algorithms, we intend to optimize a modular fuzzy agent designed to determine the optimal target speed as well as the steering angle during the race. The challenge in this kind of fuzzy systems is the design of the membership functions, which is usually done through a trial and error process, but in this paper an adapted real-coded Genetic Algorithm with two different fitness functions - has been applied to find the best values for these parameters, obtaining a robust design for the TORCS controller. The evolved drivers were tested and evaluated competing against other TORCS controllers in practice mode, without rivals, and real races. The optimized fuzzy-controllers yield a very good performance, mainly in tracks that have many turning points, which are, in turn, the most difficult for any autonomous agent. Thus, this is a real enhancement of the baseline fuzzy controllers which had several difficulties to drive in this kind of circuits.

Keywords

  • Videogames
  • Fuzzy controller
  • TORCS
  • Steering control
  • Optimization
  • Genetic algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-77538-8_24
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-77538-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   143.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Butz, M.V., Lönneker, T.D.: Optimized sensory-motor couplings plus strategy extensions for the TORCS car racing challenge. In: Lanzi, P.L. (ed.) Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games, CIG 2009, Milano, Italy, 7–10 September 2009, pp. 317–324. IEEE (2009)

    Google Scholar 

  2. Cardamone, L., Loiacono, D., Lanzi, P.L.: On-line neuroevolution applied to the open racing car simulator. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, pp. 2622–2629. IEEE Press, Piscataway (2009)

    Google Scholar 

  3. Loiacono, D., Cardamone, L., Lanzi, P.L.: Automatic track generation for high-end racing games using evolutionary computation. IEEE Trans. Comput. Intell. AI Games 3, 245–259 (2011)

    CrossRef  Google Scholar 

  4. Elsayed, S.M.M., Sarker, R., Essam, D.L.: A genetic algorithm for solving the CEC2013 competition problems on real-parameter optimization. In: IEEE Congress on Evolutionary Computation, CEC 2013, Cancun, Mexico, 21–23 June 2013, , pp. 356–360 (2013)

    Google Scholar 

  5. Floreano, D., Kato, T., Marocco, D., Sauser, E.: Coevolution of active vision and feature selection. Biol. Cybern. 90, 218–228 (2004)

    CrossRef  MATH  Google Scholar 

  6. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour a case study on the CEC2005 special session on real parameter optimization. J. Heuristics 15–6, 617–644 (2009)

    CrossRef  MATH  Google Scholar 

  7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  8. Guadarrama.S, Vazquez, R.: Tuning a fuzzy racing car by coevolution. In: Genetic and Evolving Systems, GEFS 2008. IEEE, March 2008

    Google Scholar 

  9. Herrera, F., Lozano, M., Verdegay, J.: Automatic track generation for high-end racing games using evolutionary computation. Artif. Intell. Rev. 12(4), 265–319 (1998)

    CrossRef  Google Scholar 

  10. Iancu, I.: A Mamdani type fuzzy logic controller, pp. 325–352. InTech (2012)

    Google Scholar 

  11. Kim, T.S., Na, J.C., Kim, K.J.: Optimization of an autonomous car controller using a self-adaptive evolutionary strategy. Int. J. Adv. Robot. Syst. 9(3), 73 (2012). https://doi.org/10.5772/50848

    CrossRef  Google Scholar 

  12. Kolski, S., Ferguson, D., Stacniss, C., Siegwart, R.: Autonomous driving in dynamic environments. In: Proceedings of the Workshop on Safe Navigation in Open and Dynamic Environments at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China (2006)

    Google Scholar 

  13. Koutnik, J., Cuccu, G., Schmidhuber, J., Gomez, F.: Evolving large scale neural networks for vision based TORCS. In: Foundations of Digital Games. Koutnik, J.: Dipartimento tecnologie innovative Istituto Dalle Molle di studi sull’intelligenza artificiale, March 2013. http://repository.supsi.ch/id/eprint/4548

  14. Liébana, D.P., Recio, G., Sáez, Y., Isasi, P.: Evolving a fuzzy controller for a car racing competition. In: Lanzi, P.L. (ed.) Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games, CIG 2009, Milano, Italy, 7–10 September 2009, pp. 263–270. IEEE (2009)

    Google Scholar 

  15. Loiacono, D., Cardamone, L., B, M., Lanzi, P.L.: The 2011 simulated car racing championship @ CIG-2011. TORCS News (2011). http://cig.dei.polimi.it/wpcontent/

  16. Loiacono, D., Lanzi, P.L., Bardelli, A.P.: Searching for the optimal racing line using genetic algorithms. In: 2010 IEEE Proceedings of the Symposium on Computational Intelligence and Games (CIG). IEEE Press, Copenhagen (2010)

    Google Scholar 

  17. Neubauer, A.: A theoretical analysis of the non-uniform mutation operator for the modified genetic algorithm. In: Proceedings of the IEEE International Conference on Evolutionary Computation. IEEE Press, Indianapolis (1997)

    Google Scholar 

  18. Onieva, E., Alonso, J., Perez, J., Milanés, V.: Autonomous car fuzzy control modeled by iterative genetic algorithms. In: Fuzzy Systems, pp. 1615–1620 (2009)

    Google Scholar 

  19. Onieva, E., Pelta, D., Godoy, J., Milanés, V., Rastelli, J.: An evolutionary tuned driving system for virtual car racing games: the AUTOPIA driver. Int. J. Intell. Syst. 27, 217–241 (2012)

    CrossRef  Google Scholar 

  20. Onieva, E., Pelta, D.A., Alonso, J., Milanés, V., Pérez, J.: A modular parametric architecture for the torcs racing engine. In: Proceedings of the 5th IEEE Symposium on Computational Intelligence and Games (CIG 2009), pp. 256–262. IEEE Press, Piscataway (2009)

    Google Scholar 

  21. Saez, Y., Perez, D., Sanjuan, O., Isasi, P.: Driving cars by means of genetic algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1101–1110. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_109

    CrossRef  Google Scholar 

  22. Salem, M., Mora, A.M., Merelo, J.J., García-Sánchez, P.: Driving in TORCS using modular fuzzy controllers. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 361–376. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_24

    CrossRef  Google Scholar 

  23. Sourceforge: Web TORCS, Web, November 2016. http://torcs.sourceforge.net/

  24. Tan, C.H., Ang, J.H., Tan, K.C., Tay, A.: Online adaptive controller for simulated car racing. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, June 1–6, 2008, Hong Kong, China, pp. 2239–2245. IEEE (2008)

    Google Scholar 

  25. Thang, H.D., Garibaldi, J.M.: A novel fuzzy inferencing methodology for simulated car racing. In: FUZZ-IEEE 2008, IEEE International Conference on Fuzzy Systems, Hong Kong, China, 1–6 June 2008, Proceedings, pp. 1907–1914. IEEE (2008)

    Google Scholar 

  26. Varun Kumar, S.G., Panneerselvam, R.: A study of crossover operators for genetic algorithms to solve VRP and its variants and new sinusoidal motion crossover operator. Int. J. Comput. Intell. Res. 13(7), 1717–1733 (2017)

    Google Scholar 

Download references

Acknowledgments

This work has been supported in part by: Ministerio español de Economía y Competitividad under project TIN2014-56494-C4-3-P (UGR-EPHEMECH), TIN2017-85727-C4-2-P (UGR-DeepBio) and TEC2015-68752 (also funded by FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Salem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Salem, M., Mora, A.M., Merelo, J.J., García-Sánchez, P. (2018). Evolving a TORCS Modular Fuzzy Driver Using Genetic Algorithms. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)