Abstract
Smart grid control demands delegation of liabilities to distributed, small energy resources. Resource independent algorithm design demands abstraction from individual capabilities for integration into a general optimization model. For predictive scheduling with high penetration of renewable energy resources, agent approaches have shown good performance especially when using classifier-based decoders for modeling flexibilities. Such decoder-based methods currently are not able to cope with ensembles of individually acting energy resources. Aggregating training sets that are randomly sampled from phase-spaces of single units results in folded distributions with unfavorable properties for training a decoder. Nevertheless, for integrating e. g. a hotel, a small business, or similar with an ensemble of co-generation, heat pump, solar power, or controllable consumers a combined training set is needed. Thus, we improved the training process. We present an approach using evolution strategies for sampling ensembles that moves new instances to better positions according to spread and coverage of the feasible region. As a test case we use CMA-ES and present preliminary results demonstrating the applicability of the proposed approach.
Keywords
- CMA-ES
- Smart grid
- Flexibility modeling
- Folded distributions
This is a preview of subscription content, access via your institution.
Buying options

References
Awerbuch, S., Preston, A.M. (eds.): The Virtual Utility: Accounting, Technology and Competitive Aspects of the Emerging Industry, Topics in Regulatory Economics and Policy, vol. 26. Kluwer Academic Publishers, New York (1997)
Padhy, N.: Unit commitment - a bibliographical survey. IEEE Trans. Power Syst. 19(2), 1196–1205 (2004)
Nieße, A., Lehnhoff, S., Trschel, M., Uslar, M., Wissing, C., Appelrath, H.J., Sonnenschein, M.: Market-based self-organized provision of active power and ancillary services: an agent-based approach for smart distribution grids. In: 2012 Complexity in Engineering (COMPENG), pp. 1–5 (2012)
Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: IEEE Symposium Series on Computational Intelligence 2011 (SSCI 2011), Paris, France (2011)
Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A. (eds.) ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence, vol. 2, pp. 91–105. SciTePress, Barcelona (2013)
Bremer, J., Lehnhoff, S.: Hybrid multi-ensemble scheduling. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 342–358. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_23
Hinrichs, C., Bremer, J., Sonnenschein, M.: Distributed hybrid constraint handling in large scale virtual power plants. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europe 2013). IEEE Power Energy Society (2013)
McArthur, S., Davidson, E., Catterson, V., Dimeas, A., Hatziargyriou, N., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applications - part I. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007)
Sonnenschein, M., Lünsdorf, O., Bremer, J., Tröschel, M.: Decentralized control of units in smart grids for the support of renewable energy supply. Environ. Impact Assess. Rev. 52, 40–52 (2014)
Bremer, J., Sonnenschein, M.: Sampling the search space of energy resources for self-organized, agent-based planning of active power provision. In: Page, B., Fleischer, A.G., Göbel, J., Wohlgemuth, V. (eds.) EnviroInfo 2013, pp. 214–222. Shaker (2013)
Hall, P.: The distribution of means for samples of size n drawn from a population in which the variate takes values between 0 and 1, all such values being equally probable. Biometrika 19(3/4), 240–245 (1927)
Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Patt. Recogn. 41(10), 3224–3236 (2008). http://www.sciencedirect.com/science/article/pii/S0031320308001180
Hansen, N.: The CMA Evolution Strategy: A Tutorial. Technical report, Inria Research Centre Saclay (2011). www.lri.fr/~hansen/cmatutorial.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bremer, J., Lehnhoff, S. (2018). Phase-Space Sampling of Energy Ensembles with CMA-ES. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-77538-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77537-1
Online ISBN: 978-3-319-77538-8
eBook Packages: Computer ScienceComputer Science (R0)