Skip to main content

Applications of the “Classical” Metamaterial Model—Metamaterials with Interaction Between Meta-Atoms

  • Chapter
  • First Online:
Optical Metamaterials: Qualitative Models

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 211))

  • 751 Accesses

Abstract

The interaction between the small particles (meta-atoms), either dielectric or metallic, and the propagation of an optical excitation in a regular chain of such particles has been extensively investigated [1,2,3,4,5,6]. Interest in the behavior of chains of metallic nanoparticles was driven mainly by the pursuit of subwavelength guiding structures for a new generation of the optoelectronic components in the area of communication and information processing. Nevertheless, theoretical tools for the modeling of these chains (irrespective to the nature and sizes) remain invariant: the electromagnetic excitation in the particles is supposed to be described by taking into account all possible eigenmodes [1, 3] and interactions between all particles in a chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.-S. Deng, H. Xu, and Lev Deych, Optical transport and statistics of radiative losses in disordered chains of microspheres. Phys. Rev. A 82, 041803(R) (2010)

    Google Scholar 

  2. W. Weber, G. Ford, Propagation of optical excitations by dipolar interactions in metal nanoparticle chains. Phys. Rev. B 70, 125429 (2004)

    Article  Google Scholar 

  3. M. Quinten, A. Leitner, J. Krenn, F. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331 (1998)

    Article  CAS  Google Scholar 

  4. N. Gippius, T. Weiss, S. Tikhodeev, H. Giessen, Resonant mode coupling of optical resonances in stacked nanostructures. Opt. Express 18, 7569 (2010)

    Article  CAS  Google Scholar 

  5. N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, S. Linden, Electromagnetic interaction of split-ring resonators: the role of separation and relative orientation. Opt. Express 18, 654529 (2010)

    Article  Google Scholar 

  6. A. Alù, N. Engheta, Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines. Phys. Rev. B 74, 205436 (2006)

    Article  Google Scholar 

  7. J. Rico-García, J. López-Alonso, A. Aradian, Toy model to describe the effect of positional blocklike disorder in metamaterials composites. JOSA B 29, 53 (2012)

    Article  Google Scholar 

  8. S. Maier, P. Kik, H. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides. Phys. Rev. B 67, 205402 (2003)

    Article  Google Scholar 

  9. A. Alù, N. Engheta, Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles. New J. Phys. 12, 013015 (2010)

    Article  Google Scholar 

  10. A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, F. Lederer, Multipole approach in electrodynamics of Metamaterials. Appl. Phys. A 103, 899–904 (2011)

    Article  CAS  Google Scholar 

  11. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)

    Article  Google Scholar 

  12. C. Simovski, Material parameters of metamaterials (a review). Opt. Spectrosc. 107, 726 (2009)

    Article  CAS  Google Scholar 

  13. C. Simovski, On electromagnetic characterization and homogenization of nanostructured metamaterials. J. Opt. 13, 013001 (2011)

    Article  Google Scholar 

  14. E. Tatartschuk, A. Radkovskaya, E. Shamonina, L. Solymar, Generalized Brillouin diagrams for evanescent waves in metamaterials with interelement coupling. Phys. Rev. B 81, 115110 (2010)

    Article  Google Scholar 

  15. A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, L. Solymar, Surface waves at an interface of two metamaterial structures with interelement coupling. Phys. Rev. B 82, 045430 (2010)

    Article  Google Scholar 

  16. A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, E. Shamonina, Dimer and polymer metamaterials with alternating electric and magnetic coupling. Phys. Rev. B 84, 125121 (2011)

    Article  Google Scholar 

  17. E. Shamonina, Magnetoinductive polaritons: hybrid modes of metamaterials with interelement coupling. Phys. Rev. B 85, 155146 (2012)

    Article  Google Scholar 

  18. Z. Jacob, L. Alekseev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247 (2006)

    Article  Google Scholar 

  19. E. Clayton, G.H. Derrick, A numerical solution of wave equations for real or complex Eigenvalues. Aust. J. Phys. 30, 15 (1977)

    Article  Google Scholar 

  20. D. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. Ramakrishna, J. Pendry, Limitation on subdiffraction imaging with a negative refractive index slab. APL 82, 1506 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Chipouline .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chipouline, A., Küppers, F. (2018). Applications of the “Classical” Metamaterial Model—Metamaterials with Interaction Between Meta-Atoms. In: Optical Metamaterials: Qualitative Models. Springer Series in Optical Sciences, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-77520-3_6

Download citation

Publish with us

Policies and ethics