Skip to main content

Phenomenological Versus Multipole Models

  • Chapter
  • First Online:
Optical Metamaterials: Qualitative Models

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 211))

  • 758 Accesses

Abstract

The most results of this chapter have been originally obtained in Chipouline et al. (Metamaterials 6:77, 2012 [1]), Miroshnichenko et al. (Nat Commun 6:8069, 2015 [2]) with new, partially previously unpublished interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Chipouline, C. Simovski, S. Tretyakov, Basics of averaging of the Maxwell equations for bulk materials. Metamaterials 6, 77 (2012)

    Article  Google Scholar 

  2. A. Miroshnichenko, A. Evlyukhin, Y.F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, Y. Kivshar, Observation of an anapole with dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)

    Article  CAS  Google Scholar 

  3. A. Serdyukov, I. Semchenko, S. Tretyakov, A. Sihvola, Electromagnetics of Bi-Anisotropic Materials—Theory and Applications (Gordon and Breach, Amsterdam, 2001)

    Google Scholar 

  4. S. Pekar, Crystal Optics and Additional Light Waves (Naukova Dumka, Kiev, 1982)

    Google Scholar 

  5. V. Agranovich, V. Ginzburg, Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (Crystal Optics with Spatial Dispersion, and Excitons) (Nauka, Moscow, 1965) [Translated into English (Springer, Berlin, 1984)]

    Google Scholar 

  6. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  7. L.D. Landau, E.L. Lifshitz, Electrodynamics of Continuous Media, 2nd edn. (Pergamon Press, New York, 1960) (Chapter IX)

    Google Scholar 

  8. A. Vinogradov, Electrodynamics of Compound Media (Scientific and Educational Literature Publisher, Russian Federation, 2001). ISBN 5-8360-0283-5 (in Russian)

    Google Scholar 

  9. E. Turov, Material Equations of Electrodynamics (Nauka, 1983) (in Russian)

    Google Scholar 

  10. A. Vinogradov, A. Aivazyan, Scaling theory of homogenization of the Maxwell equations. Phys. Rev. E 60, 987 (1999)

    Article  CAS  Google Scholar 

  11. G. Bosi, F. Girouard, V. Truong, J. Appl. Phys. 53, 648 (1982)

    Article  Google Scholar 

  12. E. Graham, R. Raab, JOSA 6, 1239 (1996)

    Article  Google Scholar 

  13. E. Raab, J. Cloete, JEWA 8, 1073 (1994)

    Google Scholar 

  14. C. Simovski, S. Tretyakov, On effective electromagnetic parameters of artificial nanostructured magnetic materials. Photonics Nanostruct. Fundam. Appl. 8, 254 (2010)

    Article  Google Scholar 

  15. C. Simovski, Weak spatial dispersion in composite media Polytechnika (St. Petersburg, 2003) (in Russian)

    Google Scholar 

  16. S. Tretyakov, A. Sihvola, A. Sochava, C. Simovski, Magnetoelectric interactions in bi-anisotropic media. J. Electromagn. Wave Appl. 12, 481 (1998)

    Article  Google Scholar 

  17. C. Kriegler, M. Rill, S. Linden, M. Wegener, Bianisotropic photonic metamaterials. IEEE J. Sel. Top. Quantum Electron. 16, 367–375 (2010)

    Article  CAS  Google Scholar 

  18. I. Lindell, A. Sihvola, S. Tretyakov, A. Vitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston; London, 1994)

    Google Scholar 

  19. B. Tellegen, The gyrator: a newelectric network element. Philips Res. Rep. 3, 81 (1948)

    Google Scholar 

  20. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)

    Article  Google Scholar 

  21. P. Mazur, B. Nijboer, On the statistical mechanics of matter in an electromagnetic field. I. Physica XIX, 971 (1953)

    Article  Google Scholar 

  22. G. Rusakoff, A derivation of the macroscopic Maxwell equations. Am. J. Phys. 38(10), 1188 (1970)

    Article  Google Scholar 

  23. R. Raab, O. De Lange, Multipole Theory in Electromagnetism (Clarendon, Oxford, 2005)

    Google Scholar 

  24. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature (London) 391, 667 (1998)

    Article  CAS  Google Scholar 

  25. E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Double-element metamaterial with negative index at near-infrared wavelengths. Opt. Lett. 34, 1678 (2009)

    Article  Google Scholar 

  26. A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, F. Lederer, Multipole approach in electrodynamics of metamaterials. Appl. Phys. A 103, 899–904 (2011)

    Article  CAS  Google Scholar 

  27. J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, Simple and versatile analytical approach for planar metamaterials. Phys. Rev. B 82, 075102 (2010)

    Article  Google Scholar 

  28. E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Huebner, A. Tuennermann, T. Pertsch, Optical properties of metamaterials based on asymmetric double-wire structures. Opt. Express 19, 6269 (2011)

    Article  CAS  Google Scholar 

  29. J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, F. Lederer, Phys. Rev. A 80, 063828 (2009)

    Article  Google Scholar 

  30. L.D. Landau, E.L. Lifshitz, Field Theory, 2nd edn. (Pergamon Press, New York, 1960)

    Google Scholar 

  31. V. Dubovik, V. Tugushev, Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 187(4), 145 (1990)

    Article  Google Scholar 

  32. P. Grahn, A. Shevchenko, M. Kaivola, Electromagnetic multipole theory for optical nanomaterials. New J. Phys. 14, 093033 (2012)

    Article  Google Scholar 

  33. I.B. Zeldovich, Electromagnetic interaction with parity violation. JETP 33, 1531 (1957)

    CAS  Google Scholar 

  34. G. Afanasiev, Simplest source of electromagnetic fields as a tool for testing the reciprocity-like theorems. J. Phys. D: Appl. Phys. 34, 539 (2001)

    Article  CAS  Google Scholar 

  35. G. Afanasiev, Vector solutions of the Laplace equation and the influence of helicity on Aharonov-Bohm scattering. J. Phys. A: Math. Gen. 27, 2143 (1994)

    Article  Google Scholar 

  36. G.N. Afanasiev, Y.P. Stepanovsky, J. Phys. A: Math. Gen. 8, 4565 (1995)

    Article  Google Scholar 

  37. V. Dubovik, L. Tosunyan, V. Tugushev, Axial toroidal moments in electrodynamics and solid-state physics. Zh. Eksp. Teor. Fiz. 90, 590 (1986)

    Google Scholar 

  38. T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Science 330, 1510 (2010)

    Article  CAS  Google Scholar 

  39. K. Marinov, A.D. Boardman, V.A. Fedotov, N. Zheludev, Toroidal metamaterial. New J. Phys. 9, 324 (2007)

    Article  Google Scholar 

  40. V.A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, N.I. Zheludev, Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci. Rep. 3, 2967 (2013)

    Article  CAS  Google Scholar 

  41. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12, 5239 (2012)

    Article  Google Scholar 

  42. A.M. Zagoskin, A. Chipouline, E. Il’ichev, J.R. Johansson, F. Nori, Toroidal qubits: naturally decoupled quiet artificial atoms. Sci. Rep. 5, 16934 (2015). https://doi.org/10.1038/srep16934

    Article  CAS  Google Scholar 

  43. V. Dubovik, M.A. Martsenyuk, B. Saha, Material equations for electromagnetism with toroidal polarizations. Phys. Rev. E 61(6), 7087 (2000)

    Article  CAS  Google Scholar 

  44. D. Singleton, Am. J. Phys. 64, 452 (1996)

    Article  Google Scholar 

  45. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, Retrieving effective parameters for metamaterials at oblique incidence. Phys. Rev. B 77, 195328 (2008)

    Article  Google Scholar 

  46. C. Simovski, On electromagnetic characterization and homogenization of nanostructured metamaterials. J. Opt. 13, 013001 (2011)

    Article  Google Scholar 

  47. C. Menzel, R. Alaee, E. Pshenay-Severin, C. Helgert, A. Chipouline, C. Rockstuhl, T. Pertsch, F. Lederer, Genuine effectively biaxial left-handed metamaterials due to extreme coupling. Opt. Lett. 37, 596 (2012)

    Article  Google Scholar 

  48. A. Vinogradov, A. Ignatov, A. Merzlikin, S. Tretyakov, C. Simovski, Additional effective medium parameters for composite materials (excess surface current). Opt. Express 19, 6699 (2011)

    Article  CAS  Google Scholar 

  49. D. Morits, C. Simovski, Electromagnetic characterization of planar and bulk metamaterials: a theoretical study. Phys. Rev. B 82, 165114 (2010)

    Article  Google Scholar 

  50. M. Albooyeh, D. Morits, C. Simovski, Electromagnetic characterization of substrated metasurfaces. Metamaterials 5, 178 (2011)

    Article  Google Scholar 

  51. W.B. Weir, Proc. IEEE 62, 33 (1974)

    Article  Google Scholar 

  52. A.M. Nicholson, G.F. Ross, IEEE Trans. Instrum. Meas. IM-19, 377 (1970)

    Article  Google Scholar 

  53. D. Smith, S. Schultz, P. Markos, C. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)

    Article  Google Scholar 

  54. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)

    Article  CAS  Google Scholar 

  55. M. Silveirinha, Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters. Phys. Rev. B 75, 115104 (2007)

    Article  Google Scholar 

  56. X. Chen, B.-I. Wu, J. Kong, T. Grzegorczyk, Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E 71, 046610 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Chipouline .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chipouline, A., Küppers, F. (2018). Phenomenological Versus Multipole Models. In: Optical Metamaterials: Qualitative Models. Springer Series in Optical Sciences, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-77520-3_3

Download citation

Publish with us

Policies and ethics