Application of the Model of “Quantum” Metamaterials: Metamaterial Caused Enhancement of Nonlinear Response

  • Arkadi ChipoulineEmail author
  • Franko Küppers
Part of the Springer Series in Optical Sciences book series (SSOS, volume 211)


In this chapter, the first demonstration of exceptional light-with-light optical switching performance of the carbon nanotube MM—hybrid nanostructure of plasmonic MM hybridized with semiconducting single-walled carbon nanotubes (CNT) is provided. Modulation depth of 10% in the near-IR with sub-500 fs response time is achieved with the pump fluency of just 10 μJ/cm2, which is order of magnitude lower than in previously reported artificial nanostructures. Since spectral position of the excitonic response and MM plasmonic resonance can be adjusted by using CTNs of different diameter and scaling MM design, the giant nonlinear response of the hybrid MM—in principle—can be engineered to cover the entire second and third telecom windows, from O to U-band.


  1. 1.
    A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, N. Zheludev, Carbon nanotubes in a photonic metamaterials. PRL 104, 153902 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Chipouline, S. Sugavanam, V.A. Fedotov, A.E. Nikolaenko, Analytical model for active metamaterials with quantum ingredients. J. Opt. 14, 114005 (2012)CrossRefGoogle Scholar
  3. 3.
    A.F. Koenderink, On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208 (2010)CrossRefGoogle Scholar
  4. 4.
    J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)CrossRefGoogle Scholar
  5. 5.
    N. Zheludev, Nonlinear optics on the nanoscale. Contemp. Phys. 43, 365 (2002)CrossRefGoogle Scholar
  6. 6.
    V. Almeida, C. Barrios, R. Panepucci, M. Lipson, All-optical control of light on a silicon chip. Nature 431, 1081 (2004)CrossRefGoogle Scholar
  7. 7.
    K. MacDonald, Z. Samson, M. Stockman, N. Zheludev, Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009)CrossRefGoogle Scholar
  8. 8.
    N. Zheludev, The road ahead for metamaterials. Science 328, 582 (2010)CrossRefGoogle Scholar
  9. 9.
    W. Padilla, A. Taylor, C. Highstrete, M. Lee, R. Averitt, Dynamical electric and magnetic metamaterial response at terahertz frequencies. PRL 96, 107401 (2006)CrossRefGoogle Scholar
  10. 10.
    D.J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A.M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, Y.R. Shen, Ultrafast modulation of optical metamaterials. Opt. Express 17, 17652 (2009)CrossRefGoogle Scholar
  11. 11.
    K.M. Dani, Z. Ku, P.C. Upadhya, R.P. Prasankumar, A.J. Taylor, S.R.J. Brueck, Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device. Opt. Express 19, 3973 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Pendry, A. Holden, D. Robbins, W. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)CrossRefGoogle Scholar
  13. 13.
    M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K.F. MacDonald, A. Nikolaenko, J. Xu, M. Gu, N. Zheludev, Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. Published on-line,
  14. 14.
    Y.-C. Chen, N.R. Raravikar, L.S. Schadler, P.M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, X.-C. Zhang, Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. APL 81, 975–977 (2002)Google Scholar
  15. 15.
    S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, H. Mitsu, Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications. Adv. Mater. 15, 534–537 (2003)CrossRefGoogle Scholar
  16. 16.
    V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, N.I. Zheludev, Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. PRL 99, 147401 (2007)CrossRefGoogle Scholar
  17. 17.
    B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, C. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, N. Zheludev, THz bandwidth optical switching with carbon nanotube metamaterial. Opt. Express 20(6), 6068 (2012)CrossRefGoogle Scholar
  19. 19.
    L. Huang, H.N. Pedrosa, T.D. Krauss, Ultrafast ground-state recovery of single-walled carbon nanotubes. PRL 93, 017403 (2004)CrossRefGoogle Scholar
  20. 20.
    G. Ostojic, S. Zaric, J. Kono, M. Strano, V. Moore, R. Hauge, R. Smalley, Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. PRL 92, 117402 (2004)CrossRefGoogle Scholar
  21. 21.
    W.B. Cho, J.H. Yim, S.Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, F. Rotermund, Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers. Adv. Funct. Mater. 20, 1937 (2010)CrossRefGoogle Scholar
  22. 22.
    T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21, 3874 (2009)CrossRefGoogle Scholar
  23. 23.
    R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, 2003)Google Scholar
  24. 24.
    K.H. Fong, K. Kikuchi, C.S. Goh, S.Y. Set, R. Grange, M. Haiml, A. Schlatter, U. Keller, Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. Opt. Lett. 32, 38–40 (2007)CrossRefGoogle Scholar
  25. 25.
    M. O’Connell, S. Bachilo, C. Huffman, V. Moore, M. Strano, E. Haroz, K. Rialon, P.J. Boul, W. Noon, C. Kittrell, J. Ma, R. Hauge, R. Weisman, R. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002)CrossRefGoogle Scholar
  26. 26.
    K. Tanaka, E. Plum, J.Y. Ou, T. Uchino, N. Zheludev, Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial. PRL 105, 227403 (2010)CrossRefGoogle Scholar
  27. 27.
    F. Wang, G. Dukovic, L. Brus, T. Heinz, Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. PRL 92, 177401 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M. Strano, Excited-state carrier lifetime in singlewalled carbon nanotubes. Phys. Rev. B 71, 033402 (2005)CrossRefGoogle Scholar
  29. 29.
    P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat. Photon. 2, 341–350 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, H. Okamoto, Large optical nonlinearity of femiconducting single-walled carbon nanotubes under resonant excitations. PRL 94, 047404 (2005)CrossRefGoogle Scholar
  31. 31.
    M.C. Hersam, Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotech. 3, 387 (2008)CrossRefGoogle Scholar
  32. 32.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Photonics and Quantum MaterialsSkolkovo Institute of Science and TechnologyMoscowRussia
  2. 2.Institute for Microwave Engineering and PhotonicsDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations