Advertisement

Cellular Automata Applications in Shortest Path Problem

  • Michail-Antisthenis I. Tsompanas
  • Nikolaos I. Dourvas
  • Konstantinos Ioannidis
  • Georgios Ch. SirakoulisEmail author
  • Rolf Hoffmann
  • Andrew Adamatzky
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 32)

Abstract

Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra’s algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms’ behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum’s behavior, finding the minimum-length path between two points in a labyrinth is given. The CA-based model results are found in very good agreement with the computation results produced by the in-vivo experiments especially when combined with truly parallel implementations of this CA in a Field Programmable Gate Array (FPGA) and on a Graphical Processing Unit (GPU). The presented implementations succeed to take advantage of the CA’s inherit parallelism and significantly improve the performance of the CA algorithm when compared with software in terms of computational speed and power consumption.

References

  1. 1.
    A.I. Adamatzky, Identification of Cellular Automata (Taylor & Francis, 1994)Google Scholar
  2. 2.
    A.I. Adamatzky, Computation of shortest path in cellular automata. Math. Comput. Modell. 23(4), 105–113 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Beigy, M.R. Meybodi, Utilizing distributed learning automata to solve stochastic shortest path problems. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 14(05), 591–615 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    K. Charalampous, A. Amanatiadis, A. Gasteratos, Efficient robot path planning in the presence of dynamically expanding obstacles. Cell. Autom. 330–339 (2012)Google Scholar
  5. 5.
    K. Charalampous, I. Kostavelis, A. Amanatiadis, A. Gasteratos, Real-time robot path planning for dynamic obstacle avoidance. J. Cell. Automata 9 (2014)Google Scholar
  6. 6.
    M. Defoort, T. Floquet, A. Kokosy, W. Perruquetti, Sliding-mode formation control for cooperative autonomous mobile robots. IEEE Trans. Ind. Electron. 55(11), 3944–3953 (2008)CrossRefGoogle Scholar
  7. 7.
    E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  8. 8.
    N.I. Dourvas, G.Ch. Sirakoulis, A.I. Adamatzky. Cellular automaton Belousov-Zhabotinsky model for binary full adder. Int. J. Bifurcat. Chaos 27(06), 1750089 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    N.I. Dourvas, M.-A.I. Tsompanas, G.Ch. Sirakoulis, Parallel Acceleration of Slime Mould Discrete Models (Springer International Publishing, Cham, 2016), pp. 595–617CrossRefGoogle Scholar
  10. 10.
    N. Dourvas, M.-A.I. Tsompanas, G.Ch. Sirakoulis, P. Tsalides, Hardware acceleration of cellular automata physarum polycephalum model. Parallel Process. Lett. 25(01), 1540006 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. El Yacoubi, J. Was, S. Bandini (eds.), Cellular Automata—12th International Conference on Cellular Automata for Research and Industry, ACRI 2016, Fez, Morocco, 5–8 Sept 2016. Proceedings, volume 9863 of Lecture Notes in Computer Science (Springer, 2016)zbMATHGoogle Scholar
  12. 12.
    V. Evangelidis, M.-A.I. Tsompanas, G.Ch. Sirakoulis, A.I. Adamatzky, Slime mould imitates development of roman roads in the Balkans. J. Archaeol. Sci.: Rep. 2, 264–281 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Ferguson, A. Stentz, Using interpolation to improve path planning: the field d* algorithm. J. Field Robot. 23(2), 79–101 (2006)CrossRefGoogle Scholar
  14. 14.
    G. Fishman, A comparison of four Monte Carlo methods for estimating the probability of s–t connectedness. IEEE Trans. Rel. 35(2), 145–155 (1986)CrossRefGoogle Scholar
  15. 15.
    R.W. Floyd, Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)CrossRefGoogle Scholar
  16. 16.
    I.G. Georgoudas, G. Koltsidas, G.Ch. Sirakoulis, I.Th. Andreadis, A Cellular Automaton Model for Crowd Evacuation and Its Auto-Defined Obstacle Avoidance Attribute (Springer, Berlin, Heidelberg, 2010), pp. 455–464Google Scholar
  17. 17.
    T. Giitsidis, G.Ch. Sirakoulis, Modeling passengers boarding in aircraft using cellular automata. IEEE/CAA J. Autom. Sinica 3(4), 365–384 (2016)Google Scholar
  18. 18.
    C. Hochberger, R. Hoffmann, CDL—a language for cellular processing, in Proceedings of the Second International Conference on Massively Parallel Computing Systems, ed. by G.R. Sechi (1996), pp. 41–64Google Scholar
  19. 19.
    C. Hochberger, R. Hoffmann, Solving routing problems with cellular automata, in Proceedings of the Second Conference on Cellular Automata for Research and Industry (ACRI ’96) (1996), pp. 89–98CrossRefGoogle Scholar
  20. 20.
    C. Hochberger, R. Hoffmann, S. Waldschmidt, Compilation of CDL for different target architectures, in Parallel Computing Technologies, ed. by V. Malyshkin (1995), pp. 169–179Google Scholar
  21. 21.
    R. Hoffmann, K.-P. Völkmann, M. Sobolewski, The cellular processing machine CEPRA-8L. Math. Res. 81, 179–199 (1994)Google Scholar
  22. 22.
    H. Hussain, Integration eines Compilers fur die Zellularsprache CDL in das XCellsim–System (Techn. Univ. Darmstadt, Comp. Science Dept., 1994)Google Scholar
  23. 23.
    T. Hwu, J. Isbell, N. Oros, J. Krichmar, A self-driving robot using deep convolutional neural networks on neuromorphic hardware, in 2017 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2017), pp. 635–641Google Scholar
  24. 24.
    K. Ioannidis, G.Ch. Sirakoulis, I. Andreadis, A path planning method based on cellular automata for cooperative robots. Appl. Artif. Intell. 25(8), 721–745 (2011)CrossRefGoogle Scholar
  25. 25.
    K. Ioannidis, G.Ch. Sirakoulis, I. Andreadis, Cellular ants: a method to create collision free trajectories for a cooperative robot team. Robot. Auton. Syst. 59(2), 113–237 (2011)CrossRefGoogle Scholar
  26. 26.
    K. Ioannidis, G.Ch. Sirakoulis, I. Andreadis, Cellular automata-based architecture for cooperative miniature robots. J. Cell. Autom. 8(1–2), 91–111 (2013)Google Scholar
  27. 27.
    D.B. Johnson, A note on Dijkstra’s shortest path algorithm. J. ACM 20(3), 385–388 (1973)MathSciNetCrossRefGoogle Scholar
  28. 28.
    V.S. Kalogeiton, D.P. Papadopoulos, I.P. Georgilas, G.Ch. Sirakoulis, A.I. Adamatzky, Biomimicry of Crowd Evacuation with a Slime Mould Cellular Automaton Model (Springer International Publishing, Cham, 2015), pp. 123–151Google Scholar
  29. 29.
    V.S. Kalogeiton, D.P. Papadopoulos, I.P. Georgilas, G.Ch. Sirakoulis, A.I. Adamatzky, Cellular automaton model of crowd evacuation inspired by slime mould. International Journal of General Systems 44(3), 354–391 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M.G. Kechaidou, G.Ch. Sirakoulis. Game of life variations for image scrambling. J. Comput. Sci. 21(Supplement C), 432–447 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Konstantinidis, A. Amanatiadis, S.A. Chatzichristofis, R. Sandaltzopoulos, G.Ch. Sirakoulis, Identification and retrieval of DNA genomes using binary image representations produced by cellular automata, in 2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings, Oct 2014, pp. 134–137Google Scholar
  32. 32.
    C.Y. Lee, An algorithm for path connections and its applications. IRE Trans. Electron. Comput. EC-10(2), 346–365 (1961)MathSciNetCrossRefGoogle Scholar
  33. 33.
    J. Li, B.H. Wang, P.Q. Jiang, T. Zhou, W.X. Wang, Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica 55(8), 4051–4057 (2006)Google Scholar
  34. 34.
    J.-H. Liang, C.-H. Lee, Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm. Adv. Eng. Softw. 79, 47–56 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Liu, D. Sun, C. Zhu, A dynamic priority based path planning for cooperation of multiple mobile robots in formation forming. Robot. Comput.-Integr. Manuf. 30(6), 589–596 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Macwan, J. Vilela, G. Nejat, B. Benhabib, A multirobot path-planning strategy for autonomous wilderness search and rescue. IEEE Trans. Cybern. 45(9), 1784–1797 (2015)CrossRefGoogle Scholar
  37. 37.
    F.M. Marchese, Multi-resolution hierarchical motion planner for multi-robot systems on spatiotemporal cellular automata, in Robots and Lattice Automata (Springer, 2015), pp. 149–173Google Scholar
  38. 38.
    V.A. Mardiris, G.Ch. Sirakoulis, I.G. Karafyllidis, Automated design architecture for 1-D cellular automata using quantum cellular automata. IEEE Trans. Comput. 64(9), 2476–2489 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Mastellone, D.M. Stipanovic, M.W. Spong, Remote formation control and collision avoidance for multi-agent nonholonomic systems, in 2007 IEEE International Conference on Robotics and Automation (IEEE, 2007), pp. 1062–1067Google Scholar
  40. 40.
    S.K. Moghaddam, E. Masehian, Planning robot navigation among movable obstacles (NAMO) through a recursive approach. J. Intell. Robot. Syst. 83(3–4), 603–634 (2016)CrossRefGoogle Scholar
  41. 41.
    F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. Floreano, A. Martinoli, The e-puck, a robot designed for education in engineering, in Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1 (IPCB: Instituto Politécnico de Castelo Branco, 2009), pp. 59–65Google Scholar
  42. 42.
    O. Montiel, U. Orozco-Rosas, R. Sepúlveda, Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Syst. Appl. 42(12), 5177–5191 (2015)CrossRefGoogle Scholar
  43. 43.
    K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic. Journal de Physique I 2(12), 2221–2229 (1992)CrossRefGoogle Scholar
  44. 44.
    T. Nakagaki, H. Yamada, Á. Tóth, Intelligence: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)CrossRefGoogle Scholar
  45. 45.
    L. Nalpantidis, G.Ch. Sirakoulis, A. Gasteratos, Non-probabilistic cellular automata-enhanced stereo vision simultaneous localization and mapping. Meas. Sci. Technol. 22(11), 114027 (2011)CrossRefGoogle Scholar
  46. 46.
    T.P. Nascimento, A.G.S. Conceiçao, A.P. Moreira, Multi-robot nonlinear model predictive formation control: the obstacle avoidance problem. Robotica 34(3), 549–567 (2016)CrossRefGoogle Scholar
  47. 47.
    A. Nash, S. Koenig, Any-angle path planning. AI Mag. 34(4), 85–107 (2013)CrossRefGoogle Scholar
  48. 48.
    C. Nieto-Granda, J.G. Rogers III, H.I. Christensen, Coordination strategies for multi-robot exploration and mapping. Int. J. Robot. Res. 33(4), 519–533 (2014)CrossRefGoogle Scholar
  49. 49.
    V.G. Ntinas, B.E. Moutafis, G.A. Trunfio, G.Ch. Sirakoulis, Parallel fuzzy cellular automata for data-driven simulation of wildfire spreading. J. Comput. Sci. 21(Supplement C), 469–485 (2017)CrossRefGoogle Scholar
  50. 50.
    A. Pandey, R.K. Sonkar, K.K. Pandey, D.R. Parhi, Path planning navigation of mobile robot with obstacles avoidance using fuzzy logic controller, in 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO) (IEEE, 2014), pp. 39–41Google Scholar
  51. 51.
    M.A. Porta Garcia, O. Montiel, O. Castillo, R. Sepúlveda, P. Melin, Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 9(3), 1102–1110 (2009)CrossRefGoogle Scholar
  52. 52.
    H. Qu, K. Xing, T. Alexander, An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Neurocomputing 120, 509–517 (2013)CrossRefGoogle Scholar
  53. 53.
    G.Ch. Sirakoulis, A.I. Adamatzky, Robots and Lattice Automata (Springer Publishing Company, Incorporated, 2014)Google Scholar
  54. 54.
    G.Ch. Sirakoulis, S. Bandini (eds.), Cellular Automata—10th International Conference on Cellular Automata for Research and Industry, ACRI 2012, Santorini Island, Greece, 24–27 Sept 2012. Proceedings, volume 7495 of Lecture Notes in Computer Science (Springer, 2012)zbMATHGoogle Scholar
  55. 55.
    G.Ch. Sirakoulis, I. Karafyllidis, V. Mardiris, A. Thanailakis, Study of lithography profiles developed on non-planar SI surfaces. Nanotechnology 10(4), 421 (1999)CrossRefGoogle Scholar
  56. 56.
    G.Ch. Sirakoulis, I. Karafyllidis, D. Soudris, N. Georgoulas, A. Thanailakis, A new simulator for the oxidation process in integrated circuit fabrication based on cellular automata. Modell. Simul. Mater. Sci. Eng. 7(4), 631 (1999)CrossRefGoogle Scholar
  57. 57.
    A. Stentz et al., The focussed d\(^{*}\) algorithm for real-time replanning. IJCAI 95, 1652–1659 (1995)Google Scholar
  58. 58.
    Q. Sun, Z.J. Dai, A new shortest path algorithm using cellular automata model. Comput. Technol. Dev. 19(2), 42–44 (2009)Google Scholar
  59. 59.
    U.A. Syed, F. Kunwar, M. Iqbal, Guided autowave pulse coupled neural network (GAPCNN) based real time path planning and an obstacle avoidance scheme for mobile robots. Robot. Auton. Syst. 62(4), 474–486 (2014)CrossRefGoogle Scholar
  60. 60.
    A. Tsiftsis, G.Ch. Sirakoulis, J. Lygouras, FPGA Processor with GPS for modelling railway traffic flow. J. Cell. Autom. 12(5), 381–400 (2015)Google Scholar
  61. 61.
    A. Tsiftsis, I.G. Georgoudas, G.Ch. Sirakoulis, Real data evaluation of a crowd supervising system for stadium evacuation and its hardware implementation. IEEE Syst. J. 10(2), 649–660 (2016)CrossRefGoogle Scholar
  62. 62.
    M.-A.I. Tsompanas, A.I. Adamatzky, G.Ch. Sirakoulis, J. Greenman, I. Ieropoulos, Towards implementation of cellular automata in microbial fuel cells. PLoS ONE 12, 1–16 (2017)CrossRefGoogle Scholar
  63. 63.
    M.-A.I. Tsompanas, G.Ch. Sirakoulis, Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspir. Biomimetics 7(3), 036013 (2012)CrossRefGoogle Scholar
  64. 64.
    M.-A.I. Tsompanas, G.Ch. Sirakoulis, A.I. Adamatzky, Cellular Automata Models Simulating Slime Mould Computing (Springer International Publishing, Cham, 2016), pp. 563–594CrossRefGoogle Scholar
  65. 65.
    M.-A.I. Tsompanas, G.Ch. Sirakoulis, A.I. Adamatzky, Evolving transport networks with cellular automata models inspired by slime mould. IEEE Trans. Cybern. 45(9), 1887–1899 (2015)CrossRefGoogle Scholar
  66. 66.
    M.-A.I. Tsompanas, G.Ch. Sirakoulis, A.I. Adamatzky, Physarum in silicon: the Greek motorways study. Nat. Comput. 15(2), 279–295 (2016)MathSciNetCrossRefGoogle Scholar
  67. 67.
    M.-A.I. Tsompanas, R. Mayne, G.Ch. Sirakoulis, A.I. Adamatzky, A cellular automata bioinspired algorithm designing data trees in wireless sensor networks. Int. J. Distrib. Sensor Netw. 11(6), 471045 (2015)CrossRefGoogle Scholar
  68. 68.
    P.G. Tzionas, A. Thanailakis, P.G. Tsalides, Collision-free path planning for a diamond-shaped robot using two-dimensional cellular automata. IEEE Trans. Robot. Autom. 13(2), 237–250 (1997)CrossRefGoogle Scholar
  69. 69.
    J. Von Neumann, Theory of Self-Reproducing Automata (University of Illinois Press, Champaign, IL, USA, 1966)Google Scholar
  70. 70.
    Y. Wang, Study for solving the path on the three-dimensional surface based on cellular automata method. Modern Appl. Sci. 4(5), 196–200 (2010)zbMATHGoogle Scholar
  71. 71.
    X.G.M. Wang, Y. Qian, Improved calculation method of shortest path with cellular automata model. Kybernetes 41(3–4), 508–517 (2012)MathSciNetCrossRefGoogle Scholar
  72. 72.
    S. Warshall, A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962)MathSciNetCrossRefGoogle Scholar
  73. 73.
    J. Was, G.Ch. Sirakoulis, S. Bandini (eds.), Cellular Automata—11th International Conference on Cellular Automata for Research and Industry, ACRI 2014, Krakow, Poland, 22–25 Sept 2014. Proceedings, volume 8751 of Lecture Notes in Computer Science (Springer, 2014)Google Scholar
  74. 74.
    X.J. Wu, H.F. Xue, Shortest path algorithm based on cellular automata extend model. Comput. Appl. 24(5), 92–3 (2004)Google Scholar
  75. 75.
    X. Zhang, Y. Zhang, Z. Zhang, S. Mahadevan, A. Adamatzky, Y. Deng, Rapid physarum algorithm for shortest path problem. Appl. Soft Comput. 23, 19–26 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michail-Antisthenis I. Tsompanas
    • 1
  • Nikolaos I. Dourvas
    • 2
  • Konstantinos Ioannidis
    • 3
  • Georgios Ch. Sirakoulis
    • 2
    Email author
  • Rolf Hoffmann
    • 4
  • Andrew Adamatzky
    • 1
  1. 1.University of the West of EnglandBristolUK
  2. 2.Laboratory of Electronics, Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece
  3. 3.Information Technologies Institute Centre for Research and Technology HellasThermi, ThessalonikiGreece
  4. 4.Department of Computer ScienceTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations