Skip to main content

Shortest Path Finding in Mazes by Active and Passive Particles

  • Chapter
  • First Online:
Shortest Path Solvers. From Software to Wetware

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 32))

Abstract

Maze solving and finding the shortest path or all possible exit paths in mazes can be interpreted as mathematical problems which can be solved algorithmically. These algorithms can be used by both living entities (such as humans, animals, cells) and non-living systems (computer programs, simulators, robots, particles). In this chapter we summarize several chemistry-based concepts for maze solving in two-dimensional standard mazes which rely on surface tension driven phenomena at the air-liquid interface. We show that maze solving can be implemented by using: (i) active (self-propelled) droplets and/or (ii) passive particles (chemical entities).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Adamatzky, Hot ice computer. Phys. Lett. A 374, 264–271 (2009)

    Article  Google Scholar 

  2. A. Adamatzky, Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans. Nanobiosci. 11, 131–134 (2012)

    Article  Google Scholar 

  3. A. Adamatzky, Physical maze solvers. All twelve prototypes implement 1961 Lee algorithm, in Emergent Computation: A Festschrift for Selim G. Akl, ed. by A. Adamatzky (Cham, Springer International Publishing, 2017), pp. 489–504

    Google Scholar 

  4. A. Braun, R. Tóth, I. Lagzi, Künstliche Intelligenz aus dem Chemiereaktor. Nachr. Chem. 63, 445–446 (2015)

    Article  Google Scholar 

  5. J. Čejková, M. Novák, F. Štěpánek, M.M. Hanczyc, Dynamics of chemotactic droplets in salt concentration gradients. Langmuir 30, 11937–11944 (2014)

    Article  Google Scholar 

  6. J. Čejková, T. Banno, F. Štěpánek, M.M. Hanczyc, Droplets as liquid robots. Artif. Life 23, 528–549 (2017)

    Article  Google Scholar 

  7. J. Čejková, S. Holler, N.T. Quyen, C. Kerrigan, F. Štěpánek, M.M. Hanczyc, Chemotaxis and chemokinesis of living and non-living objects, in Advances in Unconventional Computing, ed. by A. Adamatzky (Springer, 2017), pp. 245–260

    Google Scholar 

  8. A.E. Dubinov, A.N. Maksimov, M.S. Mironenko, N.A. Pylayev, V.D. Selemir, Glow discharge based device for solving mazes. Phys. Plasmas 21, 093503 (2014)

    Article  Google Scholar 

  9. M.J. Fuerstman, P. Deschatelets, R. Kane, A. Schwartz, P.J.A. Kenis, J.M. Deutch, G.M. Whitesides, Solving mazes using microfluidic networks. Langmuir 19, 4714–4722 (2003)

    Article  Google Scholar 

  10. I. Lagzi, S. Soh, P.J. Wesson, K.P. Browne, B.A. Grzybowski, Maze solving by chemotactic droplets. J. Am. Chem. Soc. 132, 1198–1199 (2010)

    Article  Google Scholar 

  11. P. Lovass, M. Branicki, R. Tóth, A. Braun, K. Suzuno, D. Ueyama, I. Lagzi, Maze solving using temperature-induced Marangoni flow. RSC Adv. 5, 48563–48568 (2015)

    Article  Google Scholar 

  12. T. Nakagaki, H. Yamada, A. Tóth, Maze-solving by an amoeboid organism. Nature 407, 470–470 (2000)

    Article  Google Scholar 

  13. T. Nakagaki, H. Yamada, A. Tóth, Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92, 47–52 (2001)

    Article  Google Scholar 

  14. Y.V. Pershin, M. Di Ventra, Solving mazes with memristors: a massively parallel approach. Phys. Rev. E 84, 046703 (2011)

    Article  Google Scholar 

  15. D.R. Reyes, M.M. Ghanem, G.M. Whitesides, A. Manz, Glow discharge in microfluidic chips for visible analog computing. Lab Chip 2, 113–116 (2002)

    Article  Google Scholar 

  16. O. Steinbock, A. Tóth, K. Showalter, Navigating complex labyrinths: optimal paths from chemical waves. Science 267, 868–871 (1995)

    Article  Google Scholar 

  17. O. Steinbock, P. Kettunen, K. Showalter, Chemical wave logic gates. J. Phys. Chem. 100, 18970–18975 (1996)

    Article  Google Scholar 

  18. K. Suzuno, D. Ueyama, M. Branicki, R. Tóth, A. Braun, I. Lagzi, Maze solving using fatty acid chemistry. Langmuir 30, 9251–9255 (2014)

    Article  Google Scholar 

  19. Y. Yu, G. Pan, Y. Gong, K. Xu, N. Zheng, W. Hua, X. Zheng, Z. Wu, Intelligence-augmented rat cyborgs in maze solving. PLoS ONE 11, e014775 (2016)

    Google Scholar 

Download references

Acknowledgements

J. Č. was financially supported by the Czech Science Foundation (Grant No. 17-21696Y). Other authors acknowledge the financial support of the Hungarian Research Fund (OTKA K104666). Financial support for R. T. by the Marie Heim-Vogtlin Program under project no PMPDP2-139698 is gratefully acknowledged. D. U. and I. L. gratefully acknowledge the financial support of the National Research, Development and Innovation Office of Hungary (TÉT12JP-1-2014-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Čejková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Čejková, J., Tóth, R., Braun, A., Branicki, M., Ueyama, D., Lagzi, I. (2018). Shortest Path Finding in Mazes by Active and Passive Particles. In: Adamatzky, A. (eds) Shortest Path Solvers. From Software to Wetware. Emergence, Complexity and Computation, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-77510-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77510-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77509-8

  • Online ISBN: 978-3-319-77510-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics