Skip to main content

Physarum-Inspired Solutions to Network Optimization Problems

  • Chapter
  • First Online:
Shortest Path Solvers. From Software to Wetware

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 32))

Abstract

In this chapter, we introduce a mathematical model inspired by slime mould Physarum polycephalum, an amoeboid organism that exhibits phenomenal path-finding behavior. By comparing it to one of the classic shortest path algorithms—Dijkstra algorithm, we highlight and summarize the key characteristics that are unique in Physarum algorithm, namely flow continuity and adaptivity. Due to these features, the Physarum model responses autonomously to the changes of external environment, thereby converging to optimal solutions adaptively. Herein, we take advantage of its superior properties and develop various models to address several significant network optimization problems, including traffic flow assignment and supply chain network design. By comparing its performance with the state-of-the-art methods in terms of solution quality and running time, we demonstrate the efficiency of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This subsection is taken from the paper published in IEEE Transactions on Cybernetics. For more details, please see [47].

  2. 2.

    This subsection is taken from the paper published in Annals of Operations Research. For more details, please see Ref. [58].

References

  1. F. Wang, X. Lai, N. Shi, A multi-objective optimization for green supply chain network design. Decis. Support Syst. 51(2), 262–269 (2011)

    Article  Google Scholar 

  2. S. Nannapaneni, S. Mahadevan, S. Rachuri, Performance evaluation of a manufacturing process under uncertainty using Bayesian networks. J. Clean. Prod. 113, 947–959 (2016)

    Article  Google Scholar 

  3. H. Baroud, J.E. Ramirez-Marquez, K. Barker, C.M. Rocco, Stochastic measures of network resilience: applications to waterway commodity flows. Risk Anal. 34(7), 1317–1335 (2014)

    Article  Google Scholar 

  4. X. Zhang, S. Mahadevan, A game theoretic approach to network reliability assessment. IEEE Trans. Reliab. 66(3), 875–892 (2017)

    Article  Google Scholar 

  5. X. Zhang, S. Mahadevan, S. Sankararaman, K. Goebel, Resilience-based network design under uncertainty. Reliab. Eng. Syst. Saf. 169, 364–379 (2017)

    Article  Google Scholar 

  6. W.-B. Du, X.-L. Zhou, O. Lordan, Z. Wang, C. Zhao, Y.-B. Zhu, Analysis of the Chinese airline network as multi-layer networks. Transp. Res. Part E: Logist. Transp. Rev. 89, 108–116 (2016)

    Article  Google Scholar 

  7. P. Angeloudis, D. Fisk, Large subway systems as complex networks. Phys. A: Stat. Mech. Appl. 367, 553–558 (2006)

    Article  Google Scholar 

  8. M. Gen, A. Kumar, J.R. Kim, Recent network design techniques using evolutionary algorithms. Int. J. Prod. Econ. 98(2), 251–261 (2005)

    Article  Google Scholar 

  9. E. Cipriani, S. Gori, M. Petrelli, Transit network design: a procedure and an application to a large urban area. Transp. Res. Part C: Emerg. Technol. 20(1), 3–14 (2012)

    Article  Google Scholar 

  10. T. Santoso, S. Ahmed, M. Goetschalckx, A. Shapiro, A stochastic programming approach for supply chain network design under uncertainty. Eur. J. Oper. Res. 167(1), 96–115 (2005)

    Article  MathSciNet  Google Scholar 

  11. A. Chen, K. Subprasom, Z. Ji, A simulation-based multi-objective genetic algorithm (SMOGA) procedure for bot network design problem. Optim. Eng. 7(3), 225–247 (2006)

    Article  MathSciNet  Google Scholar 

  12. S. Nannapaneni, S. Mahadevan, A. Dubey, D. Lechevalier, A. Narayanan, S. Rachuri, Automated uncertainty quantification through information fusion in manufacturing processes

    Google Scholar 

  13. K.L. Hoffman, M. Padberg, G. Rinaldi, Traveling salesman problem, in Encyclopedia of Operations Research and Management Science (Springer, 2013), pp. 1573–1578

    Chapter  Google Scholar 

  14. M.S. Tree, Minimum Spanning Tree (2007)

    Google Scholar 

  15. R.K. Ahuja, K. Mehlhorn, J. Orlin, R.E. Tarjan, Faster algorithms for the shortest path problem. J. ACM 37(2), 213–223 (1990)

    Article  MathSciNet  Google Scholar 

  16. M.R. Garey, D.S. Johnson, The rectilinear steiner tree problem is np-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  17. Z. Gao, J. Wu, H. Sun, Solution algorithm for the bi-level discrete network design problem. Transp. Res. Part B: Methodol. 39(6), 479–495 (2005)

    Article  Google Scholar 

  18. J.N. Hagstrom, R.A. Abrams, Characterizing Braess’s paradox for traffic networks, in Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE (IEEE, 2001), pp. 836–841

    Google Scholar 

  19. K. Holmberg, D. Yuan, A Lagrangian heuristic based branch-and-bound approach for the capacitated network design problem. Oper. Res. 48(3), 461–481 (2000)

    Article  MathSciNet  Google Scholar 

  20. K. Büdenbender, T. Grünert, H.-J. Sebastian, A hybrid Tabu search/branch-and-bound algorithm for the direct flight network design problem. Transp. Sci. 34(4), 364–380 (2000)

    Article  Google Scholar 

  21. T. Mak, P.Y. Cheung, K.-P. Lam, W. Luk, Adaptive routing in network-on-chips using a dynamic-programming network. IEEE Trans. Ind. Electron. 58(8), 3701–3716 (2011)

    Article  Google Scholar 

  22. G. Carello, F. Della Croce, M. Ghirardi, R. Tadei, Solving the hub location problem in telecommunication network design: a local search approach. Networks 44(2), 94–105 (2004)

    Article  MathSciNet  Google Scholar 

  23. J.-F. Cordeau, G. Laporte, F. Pasin, An iterated local search heuristic for the logistics network design problem with single assignment. Int. J. Prod. Econ. 113(2), 626–640 (2008)

    Article  Google Scholar 

  24. J. Kennedy, Particle swarm optimization, in Encyclopedia of Machine Learning (Springer, 2011), pp. 760–766

    Google Scholar 

  25. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  26. M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  27. A. Tero, R. Kobayashi, T. Nakagaki, A mathematical model for adaptive transport network in path finding by true slime mold. J. Theoret. Biol. 244(4), 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  28. C. Gao, C. Yan, A. Adamatzky, Y. Deng, A bio-inspired algorithm for route selection in wireless sensor networks. IEEE Commun. Lett. 18(11), 2019–2022 (2014)

    Article  Google Scholar 

  29. C. Gao, C. Yan, Z. Zhang, Y. Hu, S. Mahadevan, Y. Deng, An amoeboid algorithm for solving linear transportation problem. Phys. A: Stat. Mech. Appl. 398, 179–186 (2014)

    Article  MathSciNet  Google Scholar 

  30. C. Yan, C. Gao, J. Yu, Y. Deng, K. Nan, The optimal path tour problem. Int. J. Unconv. Comput. 10 (2014)

    Google Scholar 

  31. A. Adamatzky, Physarum Machines: Computers from Slime Mould, vol. 74 (World Scientific, 2010)

    Google Scholar 

  32. A. Tero, S. Takagi, T. Saigusa, K. Ito, D.P. Bebber, M.D. Fricker, K. Yumiki, R. Kobayashi, T. Nakagaki, Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Article  MathSciNet  Google Scholar 

  33. X. Zhang, Z. Zhang, Y. Zhang, D. Wei, Y. Deng, Route selection for emergency logistics management: a bio-inspired algorithm. Saf. Sci. 54, 87–91 (2013)

    Article  Google Scholar 

  34. X. Zhang, A. Adamatzky, X.-S. Yang, H. Yang, S. Mahadevan, Y. Deng, A Physarum-inspired approach to supply chain network design. Sci. China Inf. Sci. 59(5), 052203 (2016)

    Article  MathSciNet  Google Scholar 

  35. X. Zhang, S. Huang, Y. Hu, Y. Zhang, S. Mahadevan, Y. Deng, Solving 0–1 knapsack problems based on amoeboid organism algorithm. Appl. Math. Comput. 219(19), 9959–9970 (2013)

    MathSciNet  MATH  Google Scholar 

  36. X. Zhang, A. Adamatzky, H. Yang, S. Mahadaven, X.-S. Yang, Q. Wang, Y. Deng, A bio-inspired algorithm for identification of critical components in the transportation networks. Appl. Math. Comput. 248, 18–27 (2014)

    MATH  Google Scholar 

  37. X. Zhang, F.T. Chan, H. Yang, Y. Deng, An adaptive amoeba algorithm for shortest path tree computation in dynamic graphs. Inf. Sci. 405, 123–140 (2017)

    Article  Google Scholar 

  38. Y. Liu, C. Gao, Z. Zhang, Y. Lu, S. Chen, M. Liang, L. Tao, Solving np-hard problems with physarum-based ant colony system. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 108–120 (2017)

    Article  Google Scholar 

  39. X. Zhang, F.T. Chan, A. Adamatzky, S. Mahadevan, H. Yang, Z. Zhang, Y. Deng, An intelligent physarum solver for supply chain network design under profit maximization and oligopolistic competition. Int. J. Prod. Res. 55(1), 244–263 (2017)

    Article  Google Scholar 

  40. C. Gao, S. Chen, X. Li, J. Huang, Z. Zhang, A Physarum-inspired optimization algorithm for load-shedding problem. Appl. Soft Comput. 61, 239–255 (2017)

    Article  Google Scholar 

  41. T. Nakagaki, H. Yamada, Á. Tóth, Intelligence: Maze-solving by an amoeboid organism. Nature 407(6803), 470–470 (2000)

    Article  Google Scholar 

  42. V. Bonifaci, K. Mehlhorn, G. Varma, Physarum can compute shortest paths. J. Theoret. Biol. 309, 121–133 (2012)

    Article  MathSciNet  Google Scholar 

  43. V. Bonifaci, Physarum can compute shortest paths: a short proof. Inf. Process. Lett. 113(1–2), 4–7 (2013)

    Article  MathSciNet  Google Scholar 

  44. F. Harary, The determinant of the adjacency matrix of a graph. SAIM Rev. 4(3), 202–210 (1962)

    Article  MathSciNet  Google Scholar 

  45. D. Straszak, N.K. Vishnoi, Natural algorithms for flow problems, in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2016), pp. 1868–1883

    Google Scholar 

  46. D.B. Johnson, A note on Dijkstra’s shortest path algorithm. J. ACM (JACM) 20(3), 385–388 (1973)

    Article  MathSciNet  Google Scholar 

  47. X. Zhang, S. Mahadevan, A bio-inspired approach to traffic network equilibrium assignment problem. IEEE Trans. Cybern. 48(4), 1304–1315 (2018)

    Article  Google Scholar 

  48. Y. Sheffi, Urban Transportation Network: Equilibrium Analysis with Mathematical Programming Methods (Prentice Hall, 1985)

    Google Scholar 

  49. US Bureau of Public Roads, Traffic Assignment Manual (US Department of Commerce, Washington, DC, 1964)

    Google Scholar 

  50. P. Delle Site, F. Filippi, C. Castaldi, Reference-dependent stochastic user equilibrium with endogenous reference points. EJTIR 13(2), 147–168 (2013)

    Google Scholar 

  51. M. Mitradjieva, P.O. Lindberg, The stiff is moving-conjugate direction frank-wolfe methods with applications to traffic assignment. Transp. Sci. 47(2), 280–293 (2013)

    Article  Google Scholar 

  52. A. Nagurney, L.S. Nagurney, Sustainable supply chain network design: a multicriteria perspective. Int. J. Sustain. Eng. 3(3), 189–197 (2010)

    Article  Google Scholar 

  53. A. Nagurney, Supply Chain Network Economics: Dynamics of Prices, Flows and Profits (Edward Elgar Publishing, 2006)

    Google Scholar 

  54. A. Nagurney, A system-optimization perspective for supply chain network integration: the horizontal merger case. Transp. Res. Part E: Logist. Transp. Rev. 45(1), 1–15 (2009)

    Article  Google Scholar 

  55. A. Nagurney, J. Dong, D. Zhang, A supply chain network equilibrium model. Transp. Res. Part E: Logist. Transp. Rev. 38(5), 281–303 (2002)

    Article  Google Scholar 

  56. A. Nagurney, T. Woolley, Environmental and cost synergy in supply chain network integration in mergers and acquisitions, in Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems (Springer, 2010), pp. 57–78

    MATH  Google Scholar 

  57. K. Wu, A. Nagurney, Z. Liu, J.K. Stranlund, Modeling generator power plant portfolios and pollution taxes in electric power supply chain networks: a transportation network equilibrium transformation. Transp. Res. Part D: Transp. Environ. 11(3), 171–190 (2006)

    Article  Google Scholar 

  58. X. Zhang, A. Adamatzky, F.T. Chan, S. Mahadevan, Y. Deng, Physarum solver: a bio-inspired method for sustainable supply chain network design problem. Ann. Oper. Res. 1–2, 533–552 (2017)

    Article  MathSciNet  Google Scholar 

  59. M.G. Bell, Y. Iida, Transportation Network Analysis (1997)

    Book  Google Scholar 

  60. S. Bingfeng, G. Ziyou, Modeling Network Flow and System Optimization for Traffic and Transportation System. (China Communications Press, 2013) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoge Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Yan, C. (2018). Physarum-Inspired Solutions to Network Optimization Problems. In: Adamatzky, A. (eds) Shortest Path Solvers. From Software to Wetware. Emergence, Complexity and Computation, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-77510-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77510-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77509-8

  • Online ISBN: 978-3-319-77510-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics