Nonlinear Acoustic Wedge Waves

  • Pavel D. Pupyrev
  • Alexey M. Lomonosov
  • Elena S. Sokolova
  • Alexander S. Kovalev
  • Andreas P. MayerEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 90)


Among the various types of guided acoustic waves, acoustic wedge waves are non-diffractive and non-dispersive. Both properties make them susceptible to nonlinear effects. Investigations have recently been focused on effects of second-order nonlinearity in connection with anisotropy. The current status of these investigations is reviewed in the context of earlier work on nonlinear properties of two-dimensional guided acoustic waves, in particular surface waves. The role of weak dispersion, leading to solitary waves, is also discussed. For anti-symmetric flexural wedge waves propagating in isotropic media or in anisotropic media with reflection symmetry with respect to the wedge’s mid-plane, an evolution equation is derived that accounts for an effective third-order nonlinearity of acoustic wedge waves. For the kernel functions occurring in the nonlinear terms of this equation, expressions in terms of overlap integrals with Laguerre functions are provided, which allow for their quantitative numerical evaluation. First numerical results for the efficiency of third-harmonic generation of flexural wedge waves are presented.


Wave Wedge Second-order Elastic Constants Nonlinear SAWs Surface Acoustic Wave (SAWs) Bleustein-Gulyaev Waves 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Peter Hess for helpful discussions. Financial support by Deutsche Forschungsgemeinschaft (Grant No. MA 1074/11) is gratefully acknowledged.


  1. 1.
    Hadouaj, H., Maugin, G.A.: Une onde solitaire se propageant sur un substrat élastique recouvert d’un film mince. C. R. Acad. Sci. Paris 309, 1877–1881 (1989)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Maugin, G.A., Hadouaj, H.: Solitary surface transverse waves on an elastic substrate coated with a thin film. Phys. Rev. B 44, 1266–1280 (1991)CrossRefGoogle Scholar
  3. 3.
    Maugin, G.A., Hadouaj, H., Malomed, B.A.: Nonlinear coupling between SH surface solitons and Rayleigh modes on elastic structures. Phys. Rev. B 45, 9688–9694 (1992)CrossRefGoogle Scholar
  4. 4.
    Hadouaj, H., Maugin, G.A.: Surface solitons on elastic surfaces: numerics. Wave Motion 16, 115–123 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Maugin, G.A.: Nonlinear waves in elastic crystals. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  6. 6.
    Maugin, G.A.: Nonlinear electromechanical effects and applications. World Scientific, Singapore (1985)Google Scholar
  7. 7.
    Parker, D.F.: Nonlinear surface acoustic waves on elastic and piezoelectric materials. In: Borissov, M., Spassov, L., Georgiev, Z., Avramov, I. (eds.) 2nd International Symposium on Surface Waves in Solids and Layered Structures and 4th International Scientific Technical Conference Acoustoelectronics ’89, Varna, September 1989, pp. 389–405. World Scientific, Singapore (1990)Google Scholar
  8. 8.
    Mayer, A.P., Maradudin, A.A.: Effects of nonlinearity and dispersion on the propagation of surface acoustic waves. In: Maugin, G.A. (ed.) Continuum Models and Discrete Systems, vol. 2, pp. 306–315. Longman, London (1991)Google Scholar
  9. 9.
    Andersen, D.R., Datta, S., Gunshor, R.L.: A coupled mode approach to modulational instability and envelope solitons. J. Appl. Phys. 54, 5608–5612 (1983)CrossRefGoogle Scholar
  10. 10.
    Reutov, V.P.: Use of the averaged variational principle for describing multiwave interactions of elastic surface waves. Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 1690–1702 (1973) [Radiophys. Quantum Electron. 16, 1307–1316 (1973)]CrossRefGoogle Scholar
  11. 11.
    Kalyanasundaram, N., Ravindran, R., Prasad, P.: Coupled amplitude theory of nonlinear surface acoustic waves. J. Acoust. Soc. Am. 72, 488–493 (1982)CrossRefGoogle Scholar
  12. 12.
    Lardner, R.W.: Nonlinear surface waves on an elastic solid. Int. J. Eng. Sci. 21, 1331–1342 (1983)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Parker, D.F.: Waveform evolution for nonlinear surface acoustic waves. Int. J. Eng. Sci. 26, 59–75 (1988)CrossRefGoogle Scholar
  14. 14.
    Zabolotskaya, E.A.: Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids. J. Acoust. Soc. Am. 91, 2569–2575 (1992)CrossRefGoogle Scholar
  15. 15.
    Mayer, A.P.: Surface acoustic waves in nonlinear elastic media. Phys. Rep. 256, 237–366 (1995)CrossRefGoogle Scholar
  16. 16.
    Eckl, C., Kovalev, A.S., Mayer, A.P., Lomonosov, A.M., Hess, P.: Solitary surface acoustic waves. Phys. Rev. E 70, 046604-1–15 (2004)Google Scholar
  17. 17.
    Hess, P., Lomonosov, A.M., Mayer, A.P.: Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics 54, 39–55 (2014)CrossRefGoogle Scholar
  18. 18.
    Parker, D.F.: Stratification effects on nonlinear elastic surface waves. Phys. Earth Planet. Inter. 50, 16–25 (1988)CrossRefGoogle Scholar
  19. 19.
    Hamilton, M.F., Il’insky, Yu.A., Zabolotskaya, E.A.: Evolution equations for nonlinear Rayleigh waves. J. Acoust. Soc. Am. 97, 891–897 (1995)CrossRefGoogle Scholar
  20. 20.
    Lomonosov, A.M., Mikhalevich, V.G., Hess, P., Knight, E.Yu., Hamilton, M.F., Zabolotskaya, E.A.: Laser-generated nonlinear Rayleigh waves with shocks. J. Acoust. Soc. Am. 105, 2093–2096 (1999)CrossRefGoogle Scholar
  21. 21.
    Brysev, A.P., Krasilnikov, V.A., Podgornov, A.A., Solodov, I.Yu.: Direct observation of the form of an elastic wave with finite amplitude on a solid surface. Fiz. Tverd. Tela 26, 2104–2106 (1984) [Moscow University Physics Bulletin 26, 2104–2106 (1984)]Google Scholar
  22. 22.
    Lomonosov, A.M., Hess, P.: Nonlinear surface acoustic waves: Realization of solitary pulses and fracture. Ultrasonics 48, 482–487 (2008)CrossRefGoogle Scholar
  23. 23.
    Meegan, G.D., Hamilton, M.F., Il’inskii, Yu.A., Zabolotskaya, E.A.: Nonlinear Stoneley and Scholte waves. J. Acoust. Soc. Am. 106, 1712–1723 (1999)CrossRefGoogle Scholar
  24. 24.
    Mayer, A.: Evolution equation for nonlinear Bleustein-Gulyaev waves. Int. J. Engng. Sci. 29, 999–1004 (1991)CrossRefGoogle Scholar
  25. 25.
    Lagasse, P.: Analysis of a dispersion-free guide for elastic waves. Electron. Lett. 8, 372–373 (1972)CrossRefGoogle Scholar
  26. 26.
    Maradudin, A.A., Wallis, R.F., Mills, D.L., Ballard, R.L.: Vibrational edge modes in finite crystals. Phys. Rev. B 6, 1106–1111 (1972)CrossRefGoogle Scholar
  27. 27.
    Moss, S.L., Maradudin, A.A., Cunningham, S.L.: Vibrational edge modes for wedges with arbitrary interior angles. Phys. Rev. B 8, 2999–3008 (1973)CrossRefGoogle Scholar
  28. 28.
    Zavorokhin, G.L., Nazarov, A.I.: On elastic waves in a wedge. J. Math. Sci. 175, 646–650 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pupyrev, P.D., Lomonosov, A.M., Nikodijevic, A., Mayer, A.P.: On the existence of guided acoustic waves at rectangular anisotropic edges. Ultrasonics 71, 278–287 (2016)CrossRefGoogle Scholar
  30. 30.
    Datta, S., Hunsinger, B.J.: Analysis of line acoustical waves in general piezoelectric crystals. Phys. Rev. B 16, 4224–4229 (1977)CrossRefGoogle Scholar
  31. 31.
    Sokolova, E.S., Kovalev, A.S., Mayer, A.P.: Second-order nonlinearity of wedge acoustic waves in anisotropic media. Wave Motion 50, 246–252 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    McKenna, J., Boyd, G.D., Thurston, R.N.: Plate theory solution for guided flexural acoustic waves along the tip of a wedge. IEEE Trans. Sonics Ultrason. 21, 178–186 (1974)CrossRefGoogle Scholar
  33. 33.
    Parker, D.F.: Elastic wedge waves. J. Mech. Phys. Solids 40, 1583–1593 (1992)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Krylov, V.V.: Wedge acoustic waves: new theoretical and experimental results. In: Borissov, M., Spassov, L., Georgiev, Z., Avramov, I. (eds.) 2nd International Symposium on Surface Waves in Solids and Layered Structures and 4th International Scientific Technical Conference Acoustoelectronics ’89, Varna, September 1989, pp. 389–405. World Scientific, Singapore (1990)Google Scholar
  35. 35.
    Mozhaev, V.G.: Ray theory of wedge acoustic waves. Moscow Univ. Phys. Bull. 30, 38–42 (1989)Google Scholar
  36. 36.
    Krylov, V.V., Parker, D.F.: Harmonic generation and parametric mixing in wedge acoustic waves. Wave Motion 15, 185–200 (1992)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Krylov, V.V., Mayer, A.P., Parker, D.F.: Nonlinear evolution of initially sine-like wedge acoustic waves. In: Proceedings of the 1993 IEEE International Ultrasonics Symposium, pp. 765–768Google Scholar
  38. 38.
    Mayer, A.P., Garova, E.A., Mozhaev, V.G.: Nonlinear surface and wedge acoustic waves in the presence of weak dispersion. Proc. Estonian Acad. Sci. Phys. Math. 46, 85–93 (1997)zbMATHGoogle Scholar
  39. 39.
    Mason, I.M., Motz, M.D., Chambers, J.: Parametric interaction of acoustic surface wedge waves. Electron. Lett. 8, 429–430 (1972)CrossRefGoogle Scholar
  40. 40.
    Adler, R., Hoskins, M., Datta, S., Hunsinger, B.J.: Unusual parametric effects on line acoustic waves. IEEE Trans. Sonics Ultrason. SU-26, 345–347 (1979)CrossRefGoogle Scholar
  41. 41.
    Matlak, K.H., Kim, J.Y., Jacobs, L.J., Qu, J.: Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestruct. Eval. 34, 273–296 (2015)CrossRefGoogle Scholar
  42. 42.
    Nazarov, V.E., Sutin, A.M.: Nonlinear elastic constants of solids with cracks. J. Acoust. Soc. Am. 102, 3349–3354 (1997)CrossRefGoogle Scholar
  43. 43.
    Leibfried, G., Ludwig, W.: Gleichgewichtsbedingungen in der Gittertheorie. Z. Phys. 160, 80–92 (1960)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Sharon, T.M., Maradudin, A.A., Cunningham, S.L.: Vibrational edge modes for small-angle wedges. Phys. Rev. B 8, 6024–6026 (1973)CrossRefGoogle Scholar
  45. 45.
    Hall, J.J.: Electronic Effects in the Elastic Constants of n-Type Silicon. Phys. Rev. 161, 756–761 (1967)CrossRefGoogle Scholar
  46. 46.
    Lomonosov, A.M., Pupyrev, P.D., Hess, P., Mayer, A.P.: Nonlinear one-dimensional guided wedge waves. Phys. Rev. B 92, 014112-1–5 (2015)Google Scholar
  47. 47.
    Hunter, J.K.: Nonlinear hyperbolic surface waves. In: Bressan, A., Chen, G.-Q.G., Lewicka, M., Wang, D. (eds.) Nonlinear Conservation Laws and Applications, pp. 303–314. Springer, Boston (2011)CrossRefGoogle Scholar
  48. 48.
    Chorin, A.J., Hald, O.H.: Viscosity-dependent inertial spectra of the Burgers and Korteweg–deVries–Burgers equations. Proc. Natl. Acad. Sci. U.S.A. 102, 3921–3923 (2005)CrossRefGoogle Scholar
  49. 49.
    Sokolova, E.S., Kovalev, A.S., Timler, R., Mayer, A.P.: On the dispersion of wedge acoustic waves. Wave Motion 50, 233–245 (2013)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Mayer, A.P., Lomonosov, A.M., Hess, P.: Nonlinear acoustic waves localized at crystal edges. In: Proceedings of the 2009 IEEE International Ultrasonics Symposium, pp. 1088–1091Google Scholar
  51. 51.
    Pupyrev, P.D.: Linear and nonlinear wedge waves in solids. Dissertation, Prokhorov General Physics Institute of the Russian Academy of Sciences (2017)Google Scholar
  52. 52.
    De Jong, B.H.W.S., Beerkens, R.G.C., van Nijnatten, P.A. (eds.): Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim (2000)Google Scholar
  53. 53.
    Bogardus, E.H.: Third-order elastic constants of Ge, MgO, and fused SiO2. J. Appl. Phys. 36, 2504–2513 (1965)CrossRefGoogle Scholar
  54. 54.
    Kondo, K., Iio, S., Sawaoka, A.: Nonlinear pressure dependence of the elastic moduli of fused quartz up to 3 GPa. J. Appl. Phys. 52, 2826–2831 (1981)CrossRefGoogle Scholar
  55. 55.
    Mayer, A.P., Mozhaev, V.G., Krylov, V.V., Parker, D.F.: Nonlinear acoustic waves in a slender wedge. In: Spatschek, K.H., Mertens, F.G. (eds.) Nonlinear Coherent Structures in Physics and Biology, pp. 279–282. Plenum, New York (1994)CrossRefGoogle Scholar
  56. 56.
    Ostrovsky, L.A., Johnson, P.A.: Dynamic nonlinear elasticity in geomaterials. Rivista del Nuovo Cimento 24, 1–46 (2001)Google Scholar
  57. 57.
    Korobov, A., Izossimova, M., Kokshaiskii, A., Agafonov, A.: Elastic waves in a wedge of aluminum alloy with permanent residual deformations. AIP Conf. Proc. 1685, 080005-1–4 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pavel D. Pupyrev
    • 1
    • 2
  • Alexey M. Lomonosov
    • 1
  • Elena S. Sokolova
    • 3
  • Alexander S. Kovalev
    • 3
  • Andreas P. Mayer
    • 2
    Email author
  1. 1.Prokhorov General Physics InstituteMoscowRussia
  2. 2.Hochschule Offenburg - University of Applied SciencesOffenburgGermany
  3. 3.Verkin Institute for Low Temperature Physics and EngineeringKharkivUkraine

Personalised recommendations