Generalized Differential Effective Medium Method for Simulating Effective Physical Properties of 2D Percolating Composites

  • Mikhail MarkovEmail author
  • Valery Levin
  • Evgeny Pervago
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 90)


In this paper, we propose an approach for calculating the effective physical properties of composite materials taking into account the percolation phenomena. This approach is based on the Generalized Differential Effective Medium (GDEM) method and, in contrast to the commonly used self-consistent methods, allows us to incorporate the percolation threshold into the homogenization scheme for simulation of the effective elastic moduli and electrical conductivity of a 2D medium. In this case, the composite is treated as a conductive elastic host where elliptical inclusions of two types are embedded: (1) non-conductive soft inclusions and (2) conductive elastic inclusions that have the same properties as the host. The comparison of theoretical simulations with the experimental data for metal plates containing holes has shown that the proposed GDEM approach describes well the elastic moduli and electrical conductivity of materials of such type in the wide range of hole concentration including the area near the percolation threshold.


Effective Physical Properties Differential Effective Medium (DEM) Percolation Threshold Elliptic Inclusion Effective Elastic Moduli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Professors Christopher Lobb, Sergey Kanaun and Dr. Irina Markova for useful discussions.


  1. 1.
    Bergman, D.J., Stroud, D.: Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 148 (1992). Scholar
  2. 2.
    Berryman, J.G.: Mixture theories for rock properties. In: Ahrens, T.J. (ed.) A Handbook of Physical Constants, p. 205. American Geophysical Union, Washington, D.C. (1995)Google Scholar
  3. 3.
    Markov, K.Z.: Elementary micromechanics of heterogeneous solids. In: Markov, K.Z., Preziosi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulation, p. 1. Birkhauser, Boston (2000)Google Scholar
  4. 4.
    Goncharenko, A.V.: Generalizations of the Bruggeman equations and a concept of shape-distributed composites. Phys. Rev. E 68, 041108 (2003)Google Scholar
  5. 5.
    Brosseau, C.: Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective. J. Phys. D: Appl. Phys. 39, 1277 (2006)CrossRefGoogle Scholar
  6. 6.
    Kanaun, S., Levin, V.: Self-consistent methods for composites. In: Static Problems, vol. 1, p. 376. Springer (2008)Google Scholar
  7. 7.
    Milton, G.: The coherent potential approximation is a realizable effective medium scheme. Comm. Math. Phys. 99, 463 (1985)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Avellaneda, M.: Iterated homogenization, differential effective medium theory and applications. Commun. Pure Appl. Math. 40, 527 (1987). Scholar
  9. 9.
    Norris, A.N.: A differential scheme for the effective moduli of composites. Mech. Mater. 4, 1 (1985)CrossRefGoogle Scholar
  10. 10.
    Bruggeman, D.A.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. Lpz. 24, 636 (1935)CrossRefGoogle Scholar
  11. 11.
    Berryman, J.G., Berge, P.A.: Critique of two explicit schemes for estimating elastic properties of multiphase composites. Mech. Mater. 22, 149 (1996)CrossRefGoogle Scholar
  12. 12.
    Landauer, R.: Electrical conductivity in inhomogeneous media. In: Garland, J.C., Tanner, D.B. (eds.) Electrical, Transport and Optical Properties of Inhomogeneous Media. AIP, New York (1978)Google Scholar
  13. 13.
    Sen, P., Scala, C., Cohen, M.H.: A self similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46, 781 (1981)CrossRefGoogle Scholar
  14. 14.
    Sheng, P.: Effective-medium theory of sedimentary rocks. Phys. Rev. B 41, 4507 (1990)CrossRefGoogle Scholar
  15. 15.
    Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, Amsterdam (1993)Google Scholar
  16. 16.
    Chinh, P.D.: Modeling the conductivity of highly consolidated, bi-connected porous rocks. J. Appl. Phys. 84, 3355 (1998)CrossRefGoogle Scholar
  17. 17.
    Tobochnik, J., Laing, D., Wilson, G.: Random-walk calculation of conductivity in continuum percolation. Phys. Rev. A 41, 3052 (1990)CrossRefGoogle Scholar
  18. 18.
    Zimmerman, R.W.: Effective conductivity of a two-dimensional medium containing elliptical inclusions. Proc. R. Soc. Lond. A 452, 1713 (1996)CrossRefGoogle Scholar
  19. 19.
    Norris, A.N., Callegary, A.J., Sheng, P.: A generalized differential effective medium theory. J. Mech. Phys. Solids 33, 525 (1985)CrossRefGoogle Scholar
  20. 20.
    Hashin, Z.: The differential scheme and its application to cracked materials. J. Mech. Phys. Solids 36, 719 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Thorpe, M.F., Sen, P.: Elastic moduli of two-dimensional composite continua with elliptical inclusions. J. Acoust. Soc. America 77, 1674 (1985)CrossRefGoogle Scholar
  22. 22.
    Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351 (1945)CrossRefGoogle Scholar
  23. 23.
    Landau, L.D., Lifshitz, E.: Electrodynamics of Continuous Media. Pergamon press, N.Y (1984)Google Scholar
  24. 24.
    Markov, M., Levin, V., Mousatov, A., Kazatchenko, E.: Generalized DEM model for the effective conductivity of a two-dimensional percolating medium. Int. J. Eng. Sci. 58, 78 (2012)CrossRefGoogle Scholar
  25. 25.
    Butcher, J.C.: Numerical methods for ordinary differential equations, Wiley (2003)Google Scholar
  26. 26.
    Xia, W., Thorpe, M.F.: Percolation properties of random ellipses. Phys. Rev. A 38, 2650 (1988). Scholar
  27. 27.
    Garboczi, E., Thorpe, M.F., DeVries, M., Day, A.R.: Universal conductivity curve for a plane containing random holes. Phys. Rev. A 43, 6473 (1991)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lobb, C.J., Forrester, M.G.: Measurement of nonuniversal critical behavior in a two-dimensional continuum percolating system. Phys. Rev. B 35, 1899 (1987). Scholar
  29. 29.
    Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor K Francis, Bristol (1991)zbMATHGoogle Scholar
  30. 30.
    Tobochnik, J., Dubson, M.A., Wilson, M.L., Thorpe, M.F.: Conductance of a plane containing random cuts. Phys. Rev. A 40, 5370 (1989). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Mexicano del PetróleoMexico CityMexico

Personalised recommendations