Skip to main content

The Limitations and Successes of Concurrent Dynamic Multiscale Modeling Methods at the Mesoscale

  • Chapter

Part of the Advanced Structured Materials book series (STRUCTMAT,volume 90)

Abstract

Dynamic concurrent multiscale modeling methods are reviewed and then analyzed based on their governing equations in terms of consistency in material descriptions between different scales, wave propagation across the numerical interfaces between the different descriptions, and advances in describing defects in the coarse-grained domain. The analysis finds that most methods suffer from the consequences of inconsistent materials descriptions between representations at different scales; a few methods such as Concurrent Atomistic Continuum (CAC), Coupled Atomistic Discrete Dislocation (CADD), and the coupled Extended Finite Element Method (XFEM) are capable of simulating moving defects in the coarse-scale domain to improve practicality and prediction. Application of multiscale simulation to coupled thermal and mechanical problems is showing promise. Mesoscale evolution of defects, largely beyond the reach of conventional atomistic methods, is still beyond the reach of many concurrent multiscale methods.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-77504-3_3
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-77504-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11

References

  1. Gracie, R., Belytschko, T.: Concurrently coupled atomistic and XFEM models for dislocations and cracks. Int. J. Numer. Methods Eng. 78(3), 354–378 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Hemminger, J., Crabtree, G., Sarrao J.: From quanta to the continuum: opportunities for mesoscale science. A Report from the Basic Energy Sciences Advisory Committee, Technical Report, pp. 1601–1606 (2012)

    Google Scholar 

  3. Ziolkowski, R.W.: Metamaterials: the early years in the USA. EPJ Appl. Metamaterials 1 (2014)

    CrossRef  Google Scholar 

  4. Valentine, J., et al.: Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211), 376 (2008)

    CrossRef  Google Scholar 

  5. Tsu, R.: Man-made superlattice and quantum wells: past and future. Waves Random Complex Media 24(3), 232–239 (2014)

    MathSciNet  CrossRef  Google Scholar 

  6. Valentine, J., et al.: Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211), 376–379 (2008)

    CrossRef  Google Scholar 

  7. Wegener, M.: Metamaterials beyond optics. Science 342(6161), 939–940 (2013)

    CrossRef  Google Scholar 

  8. Gorishnyy, T., et al.: Hypersonic phononic crystals. Phys. Rev. Lett. 94(11), 115501 (2005)

    CrossRef  Google Scholar 

  9. Hopkins, P.E., et al.: Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11(1), 107–112 (2010)

    CrossRef  MathSciNet  Google Scholar 

  10. Maldovan, M.: Sound and heat revolutions in phononics. Nature 503(7475), 209–217 (2013)

    CrossRef  Google Scholar 

  11. Zen, N., et al.: Engineering thermal conductance using a two-dimensional phononic crystal. Nat. Commun. 5 (2014)

    Google Scholar 

  12. Liu, Y., Zhang, X.: Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40(5), 2494–2507 (2011)

    CrossRef  Google Scholar 

  13. Tsu, R., Fiddy, M.A.: Waves in man-made materials: superlattice to metamaterials. Waves Random Complex Media 24(3), 250–263 (2014)

    MathSciNet  CrossRef  Google Scholar 

  14. Shiari, B., Miller, R.E., Klug, D.D.: Multiscale modeling of solids at the nanoscale: dynamic approach. Can. J. Phys. 86(2), 391–400 (2008)

    CrossRef  Google Scholar 

  15. Shilkrot, L., Miller, R., Curtin, W.: Coupled atomistic and discrete dislocation plasticity. Phys. Rev. Lett. 89(2), 025501 (2002)

    CrossRef  Google Scholar 

  16. Shilkrot, L., Miller, R.E., Curtin, W.A.: Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids 52(4), 755–787 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Shiari, B., Miller, R.E.: Multiscale modeling of crack initiation and propagation at the nanoscale. J. Mech. Phys. Solids 88, 35–49 (2016)

    CrossRef  Google Scholar 

  18. Miller, R.E., Tadmor, E.B.: A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17(5), 053001 (2009)

    CrossRef  Google Scholar 

  19. Pavia, F., Curtin, W.A.: Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS. Model. Simul. Mater. Sci. Eng. 23(5), 055002 (2015)

    CrossRef  Google Scholar 

  20. Moseley, P., Oswald, J., Belytschko, T.: Adaptive atomistic-to-continuum modeling of propagating defects. Int. J. Numer. Method Eng. 92(10), 835–856 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  21. Talebi, H., Silani, M., Rabczuk, T.: Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv. Eng. Softw. 80, 82–92 (2015)

    CrossRef  Google Scholar 

  22. Chen, Y., et al.: Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 49(12), 1337–1349 (2011)

    MATH  CrossRef  Google Scholar 

  23. Dove, M.T.: Introduction to Lattice Dynamics. null. vol. null. (1993). null

    Google Scholar 

  24. Kittel, C.: Introduction to Solid State Physics. null. vol. null. (1967). null

    Google Scholar 

  25. Irving, J., Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18(6), 817–829 (1950)

    MathSciNet  CrossRef  Google Scholar 

  26. Kirkwood, J.G.: The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 14(3), 180–201 (1946)

    CrossRef  Google Scholar 

  27. Eringen, A.C.: Microcontinuum Field Theories: Foundations and Solids, vol. 487. Springer, New York (1999)

    MATH  CrossRef  Google Scholar 

  28. Chen, Y., Lee, J.D., Eskandarian, A.: Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int. J. Eng. Sci. 41(1), 61–83 (2003)

    MathSciNet  MATH  CrossRef  Google Scholar 

  29. Eringen, A.C.: Mechanics of Micromorphic Continua. Springer (1968)

    Google Scholar 

  30. Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables. Phys. A 322, 359–376 (2003)

    MATH  CrossRef  Google Scholar 

  31. Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory. (II). Balance laws. Phys. A 322, 377–392 (2003)

    MATH  CrossRef  Google Scholar 

  32. Chen, Y., Lee, J., Eskandarian, A.: Atomistic counterpart of micromorphic theory. Acta Mech. 161(1–2), 81–102 (2003)

    MATH  CrossRef  Google Scholar 

  33. Chen, Y., Lee, J.D.: Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41(8), 871–886 (2003)

    CrossRef  Google Scholar 

  34. Maugin, G.A.: Some remarks on generalized continuum mechanics. Math. Mech. Solids 20(3), 280–291 (2015)

    MathSciNet  MATH  CrossRef  Google Scholar 

  35. Maugin, G.A.: Generalized continuum mechanics: various paths. In: Continuum Mechanics Through the Twentieth Century, pp. 223–241. Springer (2013)

    Google Scholar 

  36. Maugin, G.A.: Generalized continuum mechanics: what do we mean by that? In: Mechanics of Generalized Continua, pp. 3–13 (2010)

    Google Scholar 

  37. Chen, Y.: Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130(13), 134706 (2009)

    CrossRef  Google Scholar 

  38. Chen, Y.: Local stress and heat flux in atomistic systems involving three-body forces. J. Chem. Phys. 124(5), 054113 (2006)

    CrossRef  Google Scholar 

  39. Chen, Y., Lee, J.: Atomistic formulation of a multiscale field theory for nano/micro solids. Philos. Mag. 85(33–35), 4095–4126 (2005)

    CrossRef  Google Scholar 

  40. Deng, Q., Xiong, L., Chen, Y.: Coarse-graining atomistic dynamics of brittle fracture by finite element method. Int. J. Plast. 26(9), 1402–1414 (2010)

    MATH  CrossRef  Google Scholar 

  41. Deng, Q., Chen, Y.: A coarse-grained atomistic method for 3D dynamic fracture simulation. J. Multiscale Comput. Eng. 11(3), 227–237 (2013)

    CrossRef  Google Scholar 

  42. Deng, Q.: Coarse-Graining Atomistic Dynamics of Fracture by Finite Element Method Formulation, Parallelization and Applications. Fla: University of Florida, Gainesville (2011)

    Google Scholar 

  43. Xiong, L., Chen, Y.: Coarse-grained simulations of single-crystal silicon. Model. Simul. Mater. Sci. Eng. 17, 035002 (2009)

    CrossRef  Google Scholar 

  44. Xiong, L., et al.: Coarse-grained elastodynamics of fast moving dislocations. Acta Mater. 104, 143–155 (2016)

    CrossRef  Google Scholar 

  45. Xu, S., et al.: An analysis of key characteristics of the Frank-Read source process in FCC metals. J. Mech. Phys. Solids 96, 460–476 (2016)

    CrossRef  Google Scholar 

  46. Xiong, L., et al.: A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Mater. 60(3), 899–913 (2012)

    CrossRef  Google Scholar 

  47. Xiong, L., et al.: Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int. J. Plast. 38, 86–101 (2012)

    CrossRef  Google Scholar 

  48. Xiong, L., McDowell, D.L., Chen, Y.: Nucleation and growth of dislocation loops in Cu, Al and Si by a concurrent atomistic-continuum method. Scr. Mater. 67(7), 633–636 (2012)

    CrossRef  Google Scholar 

  49. Xiong, L., et al.: Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids 59(2), 160–177 (2011)

    MATH  CrossRef  Google Scholar 

  50. Yang, S., Chen, Y.: Concurrent atomistic-continuum simulation of polycrystalline strontium titanate (2014) (in preparation)

    Google Scholar 

  51. Xu, S., et al.: Comparing EAM Potentials to Model Slip Transfer of Sequential Mixed Character Dislocations Across Two Symmetric Tilt Grain Boundaries in Ni. JOM, 1–8 (2017)

    Google Scholar 

  52. Xu, S., et al.: Validation of the concurrent atomistic-continuum method on screw dislocation/stacking fault interactions. Crystals 7(5), 120 (2017)

    CrossRef  Google Scholar 

  53. Xu, S., et al.: Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study. npj Comput. Materials 2, 15016 (2016)

    Google Scholar 

  54. Xu, S., et al.: Edge dislocations bowing out from a row of collinear obstacles in Al. Scr. Mater. 123, 135–139 (2016)

    CrossRef  Google Scholar 

  55. Xiong, L., et al.: Concurrent atomistic–continuum simulations of dislocation–void interactions in fcc crystals. Int. J. Plast. 65, 33–42 (2015)

    CrossRef  Google Scholar 

  56. Xu, S., et al.: A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals. Int. J. Plast. 72, 91–126 (2015)

    CrossRef  Google Scholar 

  57. Xiong, L., McDowell, D.L., Chen, Y.: Sub-THz Phonon drag on dislocations by coarse-grained atomistic simulations. Int. J. Plast. 55, 268–278 (2014)

    CrossRef  Google Scholar 

  58. Chen, X., et al.: Effects of phonons on mobility of dislocations and dislocation arrays. Scr. Mater. 137, 22–26 (2017)

    CrossRef  Google Scholar 

  59. Chen, X., et al.: Ballistic-diffusive phonon heat transport across grain boundaries. Acta Mater. 136(Supplement C), 355–365 (2017)

    CrossRef  Google Scholar 

  60. Yang, S., Chen Y.: Concurrent Atomistic-Continuum Simulation of Defects in Polyatomic Ionic Materials, in Multiscale Materials Modeling for Nanomechanics, pp. 261–296. Springer International Publishing (2016)

    Google Scholar 

  61. Yang, S., Chen, Y.: Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2175) (2015)

    CrossRef  Google Scholar 

  62. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    MathSciNet  MATH  CrossRef  Google Scholar 

  63. Venturini, G., et al.: Atomistic long-term simulation of heat and mass transport. J. Mech. Phys. Solids 73, 242–268 (2014)

    MathSciNet  MATH  CrossRef  Google Scholar 

  64. Isihara, A.: The Gibbs-Bogoliubov inequality dagger. J. Phys. A: Gen. Phys. 1(5), 539 (1968)

    CrossRef  Google Scholar 

  65. Ponga, M., Ortiz, M., Ariza, M.P.: Finite-temperature non-equilibrium quasi-continuum analysis of nanovoid growth in copper at low and high strain rates. Mech. Mater. 90, 253–267 (2015)

    CrossRef  Google Scholar 

  66. Mauricio, P., et al.: Dynamic behavior of nano-voids in magnesium under hydrostatic tensile stress. Model. Simul. Mater. Sci. Eng. 24(6), 065003 (2016)

    CrossRef  Google Scholar 

  67. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18(3), 209 (1998)

    MathSciNet  MATH  CrossRef  Google Scholar 

  68. Ming, P., Yang, J.Z.: Analysis of a one-dimensional nonlocal quasi-continuum method. Multiscale Model. Simul. 7(4), 1838–1875 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  69. Amelang, J.S., Venturini, G.N., Kochmann, D.M.: Summation rules for a fully nonlocal energy-based quasicontinuum method. J. Mech. Phys. Solids 82, 378–413 (2015)

    MathSciNet  CrossRef  Google Scholar 

  70. Ortner, C., Zhang, L.: Atomistic/continuum blending with ghost force correction. SIAM J. Sci. Comput. 38(1), A346–A375 (2016)

    MathSciNet  MATH  CrossRef  Google Scholar 

  71. Jeremy, A.T., Reese, E.J., Gregory, J.W.: Application of a field-based method to spatially varying thermal transport problems in molecular dynamics. Model. Simul. Mater. Sci. Eng. 18(8), 085007 (2010)

    CrossRef  Google Scholar 

  72. Wagner, G.J., et al.: An atomistic-to-continuum coupling method for heat transfer in solids. Comput. Methods Appl. Mech. Eng. 197(41), 3351–3365 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  73. Giessen, E.V.d., Needleman, A.: Discrete dislocation plasticity: a simple planar model. Model. Simul. Materials Sci. Eng. 3(5), 689 (1995)

    CrossRef  Google Scholar 

  74. Jiang, L., Rogers, R.J.: Spurious wave reflections at an interface of different physical properties in finite-element wave solutions. Commun. Appl. Numer. Methods 7(8), 595–602 (1991)

    MATH  CrossRef  Google Scholar 

  75. Xu, M., Belytschko, T.: Conservation properties of the bridging domain method for coupled molecular/continuum dynamics. Int. J. Numer. Methods Eng. 76(3), 278–294 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  76. Bažant, Z.P., Celep, Z.: Spurious reflection of elastic waves in nonuniform meshes of constant and linear strain unite elements. Comput. Struct. 15(4), 451–459 (1982)

    MATH  CrossRef  Google Scholar 

  77. Xiong, L., Chen, Y.: Multiscale modeling and simulation of single-crystal MgO through an atomistic field theory. Int. J. Solids Struct. 46(6), 1448–1455 (2009)

    MATH  CrossRef  Google Scholar 

  78. Yang, S., Zhang, N., Chen, Y.: Concurrent atomistic–continuum simulation of polycrystalline strontium titanate. Philos. Mag. 95(24), 2697–2716 (2015)

    CrossRef  Google Scholar 

  79. Xu, S., et al.: Mesh refinement schemes for the concurrent atomistic-continuum method. Int. J. Solids Struct. 90, 144–152 (2016)

    CrossRef  Google Scholar 

  80. Ariza, M.P., et al.: HotQC simulation of nanovoid growth under tension in copper. Int. J. Fract. 174(1), 75–85 (2012)

    CrossRef  Google Scholar 

  81. Chernatynskiy, A., Phillpot, S.R.: Phonon-mediated thermal transport: confronting theory and microscopic simulation with experiment. Curr. Opin. Solid State Mater. Sci. 17(1), 1–9 (2013)

    CrossRef  Google Scholar 

  82. Baz̆ant, Z.P.: Spurious reflection of elastic waves in nonuniform finite element grids. Comput. Methods Appl. Mech. Eng. 16(1), 91–100 (1978)

    CrossRef  Google Scholar 

  83. Winsberg, E.: Models and theories at the nano-scale. Spontaneous Gener. J. Hist. Philos. Sci. 2(1), 139 (2009)

    Google Scholar 

Download references

Acknowledgements

This paper is written in honor of Dr. Gerald Maugin. This material is based upon research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0006539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Diaz, A., McDowell, D., Chen, Y. (2018). The Limitations and Successes of Concurrent Dynamic Multiscale Modeling Methods at the Mesoscale. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-77504-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77504-3_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77503-6

  • Online ISBN: 978-3-319-77504-3

  • eBook Packages: EngineeringEngineering (R0)