Bending of a Cantilever Piezoelectric Semiconductor Fiber Under an End Force

  • Chunli ZhangEmail author
  • Xiaoyuan Wang
  • Weiqiu Chen
  • Jiashi Yang
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 90)


This paper presents a theoretical analysis on the bending and shear of a cantilever ZnO piezoelectric semiconductor fiber under a transverse end force. The phenomenological theory of piezoelectric semiconductors consisting of Newton’s second law of motion, the charge equation of electrostatics, and the conservation of charge of electrons and holes is used. The equations are linearized for a small end force and small electromechanical fields as well as small carrier concentration perturbations. A first-order, one-dimensional theory for the bending of ZnO fibers with shear deformation is derived from the linearized three-dimensional equations. An analytical solution is obtained. The electromechanical fields and carrier concentrations are calculated. It is found that the electric potential is nearly constant along the fiber except near the fixed end of the cantilever, and that the electron distribution over a cross section is due to the transverse shear force and the piezoelectric constant e24.



This work was supported by the National Natural Science Foundation of China (Nos. 11202182, 11272281 and 11321202).


  1. 1.
    Wang, Z.L.: Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices. Adv. Mater. 15, 432–436 (2003)CrossRefGoogle Scholar
  2. 2.
    Wang, Z.L.: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)CrossRefGoogle Scholar
  3. 3.
    Kumar, B., Kim, S.W.: Recent advances in power generation through piezoelectric nanogenerators. J. Mater. Chem. 21, 18946–18958 (2011)CrossRefGoogle Scholar
  4. 4.
    Gao, Y.F., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)CrossRefGoogle Scholar
  5. 5.
    Hu, Y.F., Chang, Y.L., Fei, P., Snyder, R.L., Wang, Z.L.: Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4, 1234–1240 (2010)CrossRefGoogle Scholar
  6. 6.
    Araneo, R., Lovat, G., Burghignoli, P., Falconi, C.: Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv. Mater. 24, 4719–4724 (2012)CrossRefGoogle Scholar
  7. 7.
    Ji, J.L., Zhou, Z.Y., Yang, X., Zhang, W.D., Sang, S.B., Li, P.W.: One-dimensional nano-interconnection formation. Small 9, 3014–3029 (2013)CrossRefGoogle Scholar
  8. 8.
    Shen, Y., Hong, J., Xu, S., Lin, S.S., Fang, H., Zhang, S., Ding, Y., Snyder, R.L., Wang, Z.L.: A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition. Adv. Func. Mater. 20, 703–707 (2010)CrossRefGoogle Scholar
  9. 9.
    Chen, T.T., Cheng, C.L., Fu, S.P., Chen, Y.F.: Photoelastic effect in ZnO nanorods. Nanotechnology 18, 225705 (2007)CrossRefGoogle Scholar
  10. 10.
    Yoo, J., Lee, C.H., Doh, Y.J., Jung, H.S., Yi, G.C.: Modulation doping in ZnO nanorods for electrical nanodevice application. Appl. Phys. Lett. 94, 223117 (2009)CrossRefGoogle Scholar
  11. 11.
    Xue, H.Z., Pan, N., Li, M., Wu, Y.K., Wang, X.P., Hou, J.G.: Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence. Nanotechnology 21, 215701 (2010)CrossRefGoogle Scholar
  12. 12.
    Gao, P.X., Song, J.H., Liu, J., Wang, Z.L.: Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19, 67–72 (2007)CrossRefGoogle Scholar
  13. 13.
    Choi, M.Y., Choi, D., Jin, M.J., Kim, I., Kim, S.H., Choi, J.Y., Lee, S.Y., Kim, J.M., Kim, S.W.: Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21, 2185–2189 (2009)CrossRefGoogle Scholar
  14. 14.
    Romano, G., Mantini, G., Garlo, A.D., D’Amico, A., Falconi, C., Wang, Z.L.: Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology 22, 465401 (2011)CrossRefGoogle Scholar
  15. 15.
    Asthana, A., Ardakani, H.A., Yap, Y.K., Yassar, R.S.: Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts. J. Mater. Chem. C 2, 3995–4004 (2014)CrossRefGoogle Scholar
  16. 16.
    Liao, Q.L., Zhang, Z., Zhang, X.H., Mohr, M., Zhang, Y., Fecht, H.J.: Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 7, 917–928 (2014)CrossRefGoogle Scholar
  17. 17.
    Wang, X.D., Zhou, J., Song, J.H., Liu, J., Xu, N.S., Wang, Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006)CrossRefGoogle Scholar
  18. 18.
    Buyukkose, S., Hernandez-Minguez, A., Vratzov, B., Somaschini, C., Geelhaar, L., Riechert, H., van der Wiel, W.G., Santos, P.V.: High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology 25, 135204 (2014)CrossRefGoogle Scholar
  19. 19.
    Yu, J., Ippolito, S.J., Wlodarski, W., Strano, M., Kalantar-Zadeh, K.: Nanorod based Shottky contact gas sensors in reversed bias condition. Nanotechnology 21, 265502 (2010)CrossRefGoogle Scholar
  20. 20.
    Chen, T.P., Young, S.J., Chang, S.J., Hsiao, C.H., Hsu, Y.J.: Bending effects of ZnO nanorod metal-semiconductor-metal photodetectors on flexible polyimide substrate. Nanoscale Res. Lett. 7, 214 (2012)CrossRefGoogle Scholar
  21. 21.
    Wang, C.H., Liao, W.S., Ku, N.J., Li, Y.C., Chen, Y.C., Tu, L.W., Liu, C.P.: Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. Small 10, 4718–4725 (2014)CrossRefGoogle Scholar
  22. 22.
    Hutson, A.R., White, D.L.: Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33, 40–47 (1962)CrossRefGoogle Scholar
  23. 23.
    Auld, B.A.: Acoustic Fields and Waves in Solids, vol. I. Wiley, New York (1973)Google Scholar
  24. 24.
    Pierret, R.F.: Semiconductor Fundamentals, 2nd edn. Addison-Wesley, Reading, Massachusetts (1988)Google Scholar
  25. 25.
    Mindlin, R.D.: Low frequency vibrations of elastic bars. Int. J. Solids Struct. 12, 27–49 (1976)CrossRefGoogle Scholar
  26. 26.
    Dokmeci, M.C.: A theory of high frequency vibrations of piezoelectric crystal bars. Int. J. Solids Struct. 10, 401–409 (1974)CrossRefGoogle Scholar
  27. 27.
    Chou, C.S., Yang, J.W., Huang, Y.C., Yang, H.J.: Analysis on vibrating piezoelectric beam gyroscope. Int. J. Appl. Electromagn. Mech. 2, 227–241 (1991)Google Scholar
  28. 28.
    Yang, J.S.: Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications. Int. J. Appl. Electromagn. Mech. 9, 409–420 (1998)CrossRefGoogle Scholar
  29. 29.
    Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. J. Zhejiang Univ. SCIENCE A 17, 37–44 (2016)CrossRefGoogle Scholar
  30. 30.
    Wauer, J., Suherman, S.: Thickness vibrations of a piezo-semiconducting plate layer. Int. J. Eng. Sci. 35, 1387–1404 (1997)CrossRefGoogle Scholar
  31. 31.
    Yang, J.S., Song, Y.C., Soh, A.K.: Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate. Arch. Appl. Mech. 76, 381–390 (2006)CrossRefGoogle Scholar
  32. 32.
    Hu, Y.T., Zeng, Y., Yang, J.S.: A Mode III crack in a piezoelectric semiconductor of crystals with 6 mm symmetry. Int. J. Solids Struct. 44, 3928–3938 (2007)CrossRefGoogle Scholar
  33. 33.
    Sladek, J., Sladek, V., Pan, E., Young, D.L.: Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. Comput. Model. Eng. Sci. 99, 273–296 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Sladek, J., Sladek, V., Pan, E., Münsche, M.: Fracture analysis in piezoelectric semiconductors under a thermal load. Eng. Fract. Mech. 126, 27–39 (2014)CrossRefGoogle Scholar
  35. 35.
    Li, P., Jin, F., Yang, J.S.: Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Mater. Struct. 24, 025021 (2015)CrossRefGoogle Scholar
  36. 36.
    Golovnev, A., Trimper, S.: Exact solution of the Poisson-Nernst-Planck equations in the linear regime. J. Chem. Phys. 131, 114903 (2009)CrossRefGoogle Scholar
  37. 37.
    Zhou, S.A., Uesaka, M.: Modeling of transport phenomena of ions and polarizable molecules: a generalized Poisson-Nernst-Planck theory. Int. J. Eng. Sci. 44, 938–948 (2006)CrossRefGoogle Scholar
  38. 38.
    de Lorenzi, H.G., Tiersten, H.F.: On the interaction of the electromagnetic field with heat conducting deformable semiconductors. J. Math. Phys. 16, 938–957 (1975)CrossRefGoogle Scholar
  39. 39.
    McCarthy, M.F., Tiersten, H.F.: on integral forms of the balance laws for deformable semiconductors. Arch. Ration. Mech. Anal. 68, 27–36 (1978)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Maugin, G.A., Daher, N.: Phenomenological theory of elastic semiconductors. Int. J. Eng. Sci. 24, 703–731 (1986)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Daher, N., Maugin, G.A.: Waves in elastic semiconductors in a bias electric field. Int. J. Eng. Sci. 24, 733–754 (1986)CrossRefGoogle Scholar
  42. 42.
    Daher, N., Maugin, G.A.: Nonlinear electroacoustic equations in semiconductors with interfaces (relation between the macroscopic and the quasi-microscopic descriptions). Int. J. Eng. Sci. 26, 37–58 (1988)CrossRefGoogle Scholar
  43. 43.
    Daher, N., Maugin, G.A.: Bulk waves in elastic semiconductors in the presence of an initial state. Int. J. Eng. Sci. 26, 993–1012 (1988)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Gao, Y.F., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)CrossRefGoogle Scholar
  45. 45.
    Gao, Y.F., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotrionics. Nano Lett. 7, 2499–2505 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chunli Zhang
    • 1
    Email author
  • Xiaoyuan Wang
    • 1
  • Weiqiu Chen
    • 1
  • Jiashi Yang
    • 2
  1. 1.Department of Engineering MechanicsZhejiang UniversityHangzhouChina
  2. 2.Department of Mechanical and Materials EngineeringThe University of Nebraska-LincolnLincolnUSA

Personalised recommendations