Abstract
Generalized continuum mechanics (GCM) has attracted increased attention in the context of multiscale materials modeling, an example of which is a bottom-up GCM model, called the atomistic field theory (AFT). Unlike most other GCM models, AFT views a crystalline material as a continuous collection of lattice points; embedded within each point is a unit cell with a group of discrete atoms. As such, AFT concurrently bridges the discrete and continuous descriptions of materials, two fundamentally different viewpoints. In this chapter, we first review the basics of AFT and illustrate how it is realized through coarse-graining atomistic simulations via a concurrent atomistic-continuum (CAC) method. Important aspects of CAC, including its advantages relative to other multiscale methods, code development, and numerical implementations, are discussed. Then, we present recent applications of CAC to a number of metal plasticity problems, including static dislocation properties, fast moving dislocations and phonons, as well as dislocation/grain boundary interactions. We show that, adequately replicating essential aspects of dislocation fields at a fraction of the computational cost of full atomistics, CAC is established as an effective tool for coarse-grained modeling of various nano/micro-scale thermal and mechanical problems in a wide range of monatomic and polyatomic crystalline materials.
Keywords
- Fast-moving Dislocations
- Coarse-grained Domain
- Symmetric Tilt Grain Boundaries (STGB)
- Full Atomic Resolution
- Slip Transfer
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options






References
Maugin, G.A.: Non-Classical Continuum Mechanics: A Dictionary. Springer, Singapore (2016)
Maugin, G.A.: Some remarks on generalized continuum mechanics. Math. Mech. Solids 20(3), 280–291 (2015)
Maugin, G.A.: Generalized continuum mechanics: various paths. In: Continuum Mechanics Through the Twentieth Century, pp. 223–241. Springer (2013)
Maugin, G.A.: Continuum Mechanics Through the Twentieth Century, Solid Mechanics and Its Applications, vol. 196, pp. 978–994. Springer, Berlin (2013)
Maugin, G.A.: Generalized continuum mechanics: what do we mean by that? In: Maugin, G., Metrikine, A. (eds.) Mechanics of Generalized Continua. Advances in Mechanics and Mathematics, pp. 3–13. Springer, New York, NY (2010)
Maugin, G.A.: A historical perspective of generalized continuum mechanics. In: Altenbach, H., Maugin, G., Erofeev, V. (eds.) Mechanics of Generalized Continua. Advanced Structured Materials, vol. 7. pp. 3–19 (2011)
Maugin, G.A., Metrikine, A.V.: Mechanics of Generalized Continua: One Hundred Years After the Cosserats. Springer, New York (2010)
Chen, Y., Lee, J.: Atomistic formulation of a multiscale field theory for nano/micro solids. Philos. Mag. 85(33–35), 4095–4126 (2005)
Chen, Y.: Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130(13), 134706 (2009)
Chen, Y., Lee, J., Xiong, L.: A generalized continuum theory and its relation to micromorphic theory. J. Eng. Mech. 135(3), 149–155 (2009)
Chen, Y., Zimmerman, J., Krivtsov, A., McDowell, D.L: Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 49(12), 1337–1349 (2011)
Cosserat, E., Cosserat, F.: Théorie des corps déformables, vol. 3, pp. 17–29, Paris (1909)
Chen, Y., Lee, J.D., Eskandarian, A.: Micropolar theory and its applications to mesoscopic and microscopic problems. Comput. Model. Eng. Sci. 5(1), 35–43 (2004)
Eringen, A.C.: Theory of micropolar elasticity. In: Microcontinuum Field Theories, pp. 101–248. Springer (1999)
Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, New York (1999)
Eringen, A.C.: Mechanics of Micromorphic Continua. Springer (1968)
Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables. Phys. A 322, 359–376 (2003)
Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory. (II). Balance laws. Phys. A 322, 377–392 (2003)
Chen, Y., Lee, J., Eskandarian, A.: Atomistic counterpart of micromorphic theory. Acta Mech. 161(1–2), 81–102 (2003)
Chen, Y., Lee, J.D.: Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41(8), 871–886 (2003)
Chen, Y., Lee, J.D., Eskandarian, A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41(8), 2085–2097 (2004)
Chen, Y., Lee, J.D., Eskandarian, A.: Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int. J. Eng. Sci. 41, 61–83 (2003)
Hoover, W.G.: Computational Statistical Mechanics. Elsevier (1991)
Chen, Y.: Local stress and heat flux in atomistic systems involving three-body forces. J. Chem. Phys. 124(5), 054113 (2006)
Chen, Y., Diaz, A.: Local momentum and heat fluxes in transient transport processes and inhomogeneous systems. Phys. Rev. E 94(5), 053309 (2016)
Chen, Y.: The origin of the distinction between microscopic formulas for stress and Cauchy stress. EPL 116(3), 34003 (2016)
Espanol, P.: Statistical mechanics of coarse-graining. In: Novel Methods in Soft Matter Simulations, pp. 69–115. Springer (2004)
Izvekov, S., Voth, G.A.: Multiscale coarse-graining of liquid-state systems. J. Chem. Phys. 123(13), 134105 (2005)
Izvekov, S., Voth, G.A.: A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B 109(7), 2469–2473 (2005)
Noid, W., Chu, J.W., Ayton, G.S., Krishna, V., Izvekov, S., Voth, G.A., Das, A., Andersen, H.C.: The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128(24), 244114 (2008)
Noid, W., Liu, P., Wang, Y., Chu, J.W., Ayton, G.S., Izvekov, S., Andersen, H.C., Voth, G.A.: The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. J. Chem. Phys. 128(24), 244115 (2008)
Tadmor, E.B., Ortiz, M., Phillips, R.: Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 1529–1563 (1996)
Dupuy, L.M., Tadmor, E.B., Miller, R.E., Phillips, R.: Finite-temperature quasicontinuum: molecular dynamics without all the atoms. Phys. Rev. Lett. 95, 060202 (2005)
Kulkarni, Y., Knap, J., Ortiz, M.: A variational approach to coarse-graining of equilibrium and non-equilibrium atomistic description at finite temperature. J. Mech. Phys. Solids 56, 1417–1449 (2008)
Shenoy, V.B., Miller, R., Tadmor, E.B., Phillips, R., Ortiz, M.: Quasicontinuum models of interfacial structure and deformation. Phys. Rev. Lett. 80, 742–745 (1998)
Rudd, R.E., Broughton, J.Q.: Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys. Rev. B 58(10), R5893 (1998)
Irving, J., Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18(6), 817–829 (1950)
Kittel, C.: Introduction to Solid State Physics. Wiley, Inc (1956)
Deng, Q, Xiong, L., Chen, Y.: Coarse-graining atomistic dynamics of fracture by finite element method. Int. J. Plast. 26(9), 1402–1414
Xiong, L., Chen, Y.: Coarse-grained simulations of single-crystal silicon. Modell. Simul. Mater. Sci. Eng. 17, 035002 (2009)
Xiong, L., Chen, Y., Lee, J.D.: Atomistic simulation of mechanical properties of diamond and silicon carbide by a field theory. Model. Simul. Mater. Sci. Eng. 15(5), 535 (2007)
Xiong, L., Tucker, G., McDowell, D.L., Chen, Y.: Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids 59(2), 160–177 (2011)
Xu, S., Che, R., Xiong, L., Chen, Y., McDowell, D.L.: A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals. Int. J. Plast. 72, 91–126 (2015)
Xu, S., Payne, T.G., Chen, H., Liu, Y., Xiong, L., Chen, Y., McDowell, D.L.: PyCAC: The concurrent atomistic-continuum simulation environment. J. Mater. Res. (2018) in press, https://doi.org/10.1557/jmr.2018.8
Shilkrot, L.E., Curtin, W.A., Miller, R.E.: A coupled atomistic/continuum model of defects in solids. J. Mech. Phys. Solids 50, 2085–2106 (2002)
Shilkrot, L.E., Miller, R.E., Curtin, W.A.: Coupled atomistic and discrete dislocation plasticity. Phys. Rev. Lett. 89, 025501 (2002)
Xu, S., Xiong, L., Deng, Q., McDowell, D.L.: Mesh refinement schemes for the concurrent atomistic-continuum method. Int. J. Solids Struct. 90, 144–152 (2016)
Zbib, H.M., de la Rubia, T.D., Bulatov, V.: A multiscale model of plasticity based on discrete dislocation dynamics. ASME J. Eng. Mater. Technol. 124(1), 78–87 (2002)
Hochrainer, T., Zaiser, M., Gumbsch, P.: A three-dimensional continuum theory of dislocation systems: kinematics and mean-field formulation. Philos. Mag. 87, 1261–1282 (2007)
Arsenlis, A., Cai, W., Tang, M., Rhee, M., Oppelstrup, T., Hommes, G., Pierce, T.G., Bulatov, V.V.: Enabling strain hardening simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng. 15, 553–595 (2007)
El-Azab, A., Deng, J., Tang, M.: Statistical characterization of dislocation ensembles. Philos. Mag. 87(8–9), 1201–1223 (2007)
Devincre, B., Hoc, T., Kubin, L.: Dislocation mean free paths and strain hardening of crystals. Science 320(5884), 1745–1748 (2008)
Motz, C., Weygan, D., Senger, J., Gumbsch, P.: Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 57(6), 1744–1754 (2009)
Zaiser, M., Sandfeld, S.: Scaling properties of dislocation simulations in the similitude regime. Model. Simul. Mater. Sci. Eng. 22:065012, (2014)
Groma, I., Zaiser, M., Ispanovity, P.D.: Dislocation patterning in a two-dimensional continuum theory of dislocations. Phys. Rev. B 93, 214110 (2016)
Xia, S., El-Azab, A.: Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Model. Simul. Mater. Sci. Eng. 23(5), 55009 (2015)
Xiong, L., Chen, Y.: Effects of dopants on the mechanical properties of nanocrystalline silicon carbide thin film. Comput. Model. Eng. Sci. 24, 203–214 (2008)
Xiong, L., Chen, Y.: Coarse-grained simulations of single-crystal silicon. Model. Simul. Mater. Sci. Eng. 17, 035002 (2009)
Deng, Q., Chen, Y.: A coarse-grained atomistic method for 3D dynamic fracture simulation. Int. J. Multiscale Comput. Eng. 11, 227–237 (2013)
Xiong, L., Deng, Q., Tucker, G., McDowell, D.L., Chen, Y.: A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Mater. 60, 899–913 (2012)
Xiong, L., Deng, Q., Tucker, G., McDowell, D.L., Chen, Y.: Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int. J. Plast. 38, 86–101 (2012)
Xiong, L., McDowell, D.L., Chen, Y.: Nucleation and growth of dislocation loops in Cu, Al and Si by a concurrent atomistic-continuum method. Scr. Mater. 67, 633–636 (2012)
Xiong, L., Chen, Y.: Coarse-grained atomistic modeling and simulation of inelastic material behavior. Acta Mech. Solida Sin. 25, 244–261 (2012)
Xiong, L., McDowell, D.L., Chen, Y.: Sub-THz Phonon drag on dislocations by coarse-grained atomistic simulations. Int. J. Plast. 55, 268–278 (2014)
Xiong, L., Xu, S., McDowell, D.L., Chen, Y.: Concurrent atomistic-continuum simulations of dislocation-void interactions in fcc crystals. Int. J. Plast. 65, 33–42 (2015)
Xiong, L., Rigelesaiyin, J., Chen, X., Xu, S., McDowell, D.L., Chen, Y.: Coarse-grained elastodynamics of fast moving dislocations. Acta Mater. 104, 143–155 (2016)
Yang, S., Xiong, L., Deng, Q., Chen, Y.: Concurrent atomistic and continuum simulation of strontium titanate. Acta Mater. 61, 89–102 (2013)
Yang, S., Chen, Y.: Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary. Proc. Roy. Soc. A 471, 20140758 (2015)
Yang, S., Zhang, N., Chen, Y.: Concurrent atomistic-continuum simulation of polycrystalline strontium titanate. Philos. Mag. 95, 2697–2716 (2015)
Yang, S., Chen, Y.: Concurrent atomistic-continuum simulation of defects in polyatomic ionic materials. In: Weinberger, C., Tucker, G. (eds.) Multiscale Materials Modeling for Nanomechanics. Springer International Publishing, Switzerland (2016)
Chen, X., Xiong, L., McDowell, D.L., Chen, Y.: Effects of phonons on mobility of dislocations and dislocation arrays. Scr. Mater. 137, 22–26 (2017)
Chen, X., Li, W., Xiong, L., Li, Y., Yang, S., Zheng, Z., McDowell, D.L., Chen, Y.: Ballistic-diffusive phonon heat transport across grain boundaries. Acta Mater. 136, 355–365 (2017)
Chen, X., Diaz, A., Xiong, L., Chen, Y.: Passing waves from atomistic to continuum. J. Comput. Phys. 354, 393–402 (2018)
Chen, X., Li, W., Diaz, A., Li, Y., McDowell, D.L., Chen, Y.: Recent progress in the concurrent atomistic-continuum method and its application in phonon transport. MRS Commun. 7(4), 785–797 (2017)
Li, J: AtomEye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 11(2), 173 (2003)
Stukowski, A: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)
Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106(738), 463–477 (1924)
Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)
Xu, S.: The concurrent atomistic-continuum method: Advancements and applications in plasticity of face-centered cubic metals. Ph.D. Dissertation, Georgia Institute of Technology (2016)
Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, USA (1989)
Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)
Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)
Xu, S., Xiong, L., Chen, Y., McDowell, D.L.: Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: A concurrent atomistic-continuum study. npj Comput. Mater. 2, 15016 (2016)
Xu, S., Xiong, L., Chen, Y., McDowell, D.L.: A concurrent atomistic-continuum study of slip transfer of sequential mixed character dislocations across symmetric tilt grain boundaries in Ni. JOM 69, 814–821 (2017)
McDowell, D.L.: A perspective on trends in multiscale plasticity. Int. J. Plast. 26, 1280–1309 (2010)
Xu, S., Xiong, L., Chen, Y., McDowell, D.L.: An analysis of key characteristics of the Frank-Read source process in FCC metals. J. Mech. Phys. Solids 96, 460–476 (2016)
Xu, S., Xiong, L., Chen, Y., McDowell, D.L.: Shear stress- and line length-dependent screw dislocation cross-slip in FCC Ni. Acta Mater. 122, 412–419 (2017)
Xu, S., Xiong, L., Chen, Y., McDowell, D.L.: Edge dislocations bowing out from a row of collinear obstacles in Al. Scr. Mater. 123, 135–139 (2016)
Xu, S., Xiong, L., Chen, Y., McDowell, D.L.: Validation of the concurrent atomistic-continuum method on screw dislocation/stacking fault interactions. Crystals 7, 120 (2017)
Xiong, L., Chen, X., Zhang, N., McDowell, D.L., Chen, Y.: Prediction of phonon properties of 1D polyatomic systems using concurrent atomistic-continuum simulation. Arch. Appl. Mech. 84, 1665–1675 (2014)
Rice, J.R.: Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)
Muschik, W.: Non-Equilibrium Thermodynamics with Application to Solids. Springer, New York (1993)
Hull, D., Bacon, D.J.: Introduction to Dislocations, 5th edn. Butterworth-Heinemann, Oxford, UK (2011)
Anderson, P.M., Hirth, J.P., Lothe, J.: Theory of Dislocations, 3rd edn. Cambridge University Press (2017)
Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Mater. 1(2), 153–162 (1953)
Hill, R., Sneddon, I.N. (eds.): Progress in Solid Mechanics, vol. 1, p. 330. North-Holland Publishing Company (1960)
Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., Kress, J.D.: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63(22), 224106 (2001)
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)
Hirel, P.: Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015)
Hartley, C.S., Mishin, Y.: Representation of dislocation cores using Nye tensor distributions. Mater. Sci. Eng. A 400, 18–21 (2005)
Gurrutxaga-Lerma, B., Balint, D.S., Dini, D., Eakins, D.E., Sutton, A.P.: A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading. Proc. R. Soc. A 469, 20130141 (2013)
Chen, X., Chernatynskiy, A., Xiong, L., Chen, Y.: A coherent phonon pulse model for transient phonon thermal transport. Comput. Phys. Commun. 195, 112–116 (2015)
Ramesh, K.T.: Nanomaterials: Mechanics and Mechanisms. Springer (2009)
Kacher, J., Eftink, B.P., Cui, B., Robertson, I.M.: Dislocation interactions with grain boundaries. Curr. Opin. Solid State Mater. Sci. 18, 227–243 (2014)
Counts, W.A., Braginsky, M.V., Battaile, C.C., Holm, E.A.: Predicting the Hall-Petch effect in fcc metals using non-local crystal plasticity. Int. J. Plast. 24, 1243–1263 (2008)
Spearot, D.E., Sangid, M.D.: Insights on slip transmission at grain boundaries from atomistic simulations. Curr. Opin. Solid State Mater. Sci. 18, 188–195 (2014)
Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012)
Mishin, Y., Farkas, D., Mehl, M.J., Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393 (1999)
Voter, A.F., Chen, S.P.: Accurate interatomic potentials for Ni, Al, and Ni3Al. Mater. Res. Soc. Symp. Proc. 82, 175 (1987)
Angelo, J.E., Moody, N.R., Baskes, M.I.: Trapping of hydrogen to lattice-defects in nickel. Model. Simul. Mater. Sci. Eng. 3, 289 (1995)
Foiles, S.M., Hoyt, J.J.: Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater. 54, 3351 (2006)
Zhou, X.W., Johnson, R.A., Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004)
Lipkin, D.M., Clarke, D.R., Beltz, G.E.: A strain-gradient model of cleavage fracture in plastically deforming materials. Acta Mater. 44, 4051–4058 (1996)
Hussein, A.M., El-Awady, J.A.: Quantifying dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals. J. Mech. Phys. Solids 91, 126–144 (2016)
Acknowledgements
These results are in part based upon work supported by the National Science Foundation as a collaborative effort between Georgia Tech (CMMI-1232878) and University of Florida (CMMI-1233113). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors thank Dr. Jinghong Fan, Dr. Qian Deng, Dr. Shengfeng Yang, Dr. Xiang Chen, Mr. Rui Che, and Mr. Weixuan Li for helpful discussions, Mr. Kevin Chu for building the Python scripting interface in PyCAC, and Dr. Aleksandr Blekh for arranging execution of PyCAC via MATIN. The work of SX was supported in part by Georgia Tech Institute for Materials and in part by the Elings Prize Fellowship in Science offered by the California NanoSystems Institute (CNSI) on the UC Santa Barbara campus. SX also acknowledges support from the Center for Scientific Computing from the CNSI, MRL: an NSF MRSEC (DMR-1121053). LX acknowledges the support from the Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0006539. The work of LX was also supported in part by the National Science Foundation under Award Number CMMI-1536925. DLM is grateful for the additional support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Xu, S., Rigelesaiyin, J., Xiong, L., Chen, Y., McDowell, D.L. (2018). Generalized Continua Concepts in Coarse-Graining Atomistic Simulations. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-77504-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-77504-3_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77503-6
Online ISBN: 978-3-319-77504-3
eBook Packages: EngineeringEngineering (R0)