Multiscale Modeling of 2D Material MoS2 from Molecular Dynamics to Continuum Mechanics

  • Kerlin P. Robert
  • Jiaoyan Li
  • James D. LeeEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 90)


Research on two dimensional (2D) materials, such as Graphene and Molybdenum disulfide (MoS2), now involves thousands of researchers worldwide, implementing cutting edge technology to study them. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. This work introduces atomistic simulation methodologies, based on interatomic potential, as a tool to unveil the mechanical and thermal properties at nanoscale of MoS2, a material that has attracted most research interests among all 2D materials. Young’s modulus, Poison’s ratio, heat conductivity and heat capacity at atomic scale are studied. These findings lend compelling insights into the atomistic mechanism of MoS2. Then, based on these useful information, we perform concurrent multiscale modeling of MoS2 from molecular dynamics simulation in atomic region to finite element analysis in continuum region.


Concurrent Multiscale Modeling Atomic Region Virial Stress Tensor Genuine Continuity (GC) Nose Hoover Thermostat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208 (1957)CrossRefGoogle Scholar
  2. 2.
    Alder, B.J., Wainwright, T.E.: Studies in molecular dnamics. I. General method. J. Chem. Phys. 31(2), 459–466 (1959)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boresi, A.P., Chong, K.P., Lee, J.D.: Elasticity in Engineering Mechanics. Wiley (2011)Google Scholar
  4. 4.
    Chen, Y., Lee, J.D., Eskandarin, A.: Meshless Methods in Solid Mechanics. Springer (2006)Google Scholar
  5. 5.
    de Groot, S.R., Suttorp, L.G.: Foundations of Electrodynamics. North-Holland Pub, Co (1972)Google Scholar
  6. 6.
    Eringen, A.C.: Microcontinuum Field Theories I: Foundation and Solids. Springer (1999)Google Scholar
  7. 7.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  8. 8.
    Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)CrossRefGoogle Scholar
  9. 9.
    Jiang, J.P.: Molecular dynamics simulations of single-layer molybdenum disulfide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114(6), 064307 (2013)CrossRefGoogle Scholar
  10. 10.
    Laudau, L.D.: Theory of phase changes. I. Physikalische Z. Sowjetunion 11, 26–47 (1937)Google Scholar
  11. 11.
    Lee, J.D., Li, J., Zhang, Z., Wang, L.: Sequential and concurrent multiscale modeling of multiphysics: from atoms to continuum. In: Meguid, S.A., Weng, G. J. (eds.) Micromechanics and Nanomechanics of Composite Solids. Springer (2017)Google Scholar
  12. 12.
    Li, J., Lee, J.D.: Reformulation of the Nose-Hoover thermostat for heat conduction simulation at nanoscale. Acta Mech. 225, 1223–1233 (2014)CrossRefGoogle Scholar
  13. 13.
    Li, X., Zhu, H.: Two-dimensional MoS2: properties, preparation, and applications. J. Mater. 1, 33–44 (2015)Google Scholar
  14. 14.
    Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)CrossRefGoogle Scholar
  15. 15.
    Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 53, 255–268 (1984)CrossRefGoogle Scholar
  16. 16.
    Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)CrossRefGoogle Scholar
  17. 17.
    Stewart, J., Spearot, D.: Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Model. Simul. Mater. Sci. Eng. 21(4), 045003(2013)CrossRefGoogle Scholar
  18. 18.
    Stillinger, F.H., Rahman, A.: Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60(4), 1545–1557 (1974)CrossRefGoogle Scholar
  19. 19.
    Subramaniyan, A.K., Sun, C.T.: Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45(14–15), 4340–4346 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonUSA
  2. 2.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations