Damping in Materials and Structures: An Overview

  • Yvon ChevalierEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 90)


For ordinary people, mechanical damping is the attenuation of a motion over time under possible eventual external actions. The phenomenon is produced by the loss or dissipation of energy during motion and thus time. The concept of real time is therefore at the center of the phenomenon of damping and given the recent scientific contributions (of gravitational waves in 2016), the notion of space-time calls for reflections and comments. The systemic approach of the phenomenon taking into account the mechanical system, its input and output variables (generalized forces or displacements) allows a very convenient analysis of the phenomenon. We insist on the differences between a phenomenon and a system: the causality, the linearity, the hysteresis are for example properties of phenomena and not properties of system; on the other hand we can consider dissipative or non-dissipative systems. We describe some macroscopic dissipation mechanisms in structures and some microscopic dissipation at the molecular level in materials or mesoscopic dissipation in composites materials. After specifying the notion of internal forces of a system we present some classical dissipative mechanisms currently used: viscous dissipation, friction dissipation, micro-frictions. The purpose of this presentation is not to list new dissipative systems but to point out a number of errors, both scientific and technical, which are frequently committed.


Friction Dissipation Tangential Interaction Forces Actual External Events Schapery Model Specific Damping Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aström, K.J., de Wit, C.C.: Revisistings the LuGre friction model. IEEE Control Syst. Mag. 28(6), 101–114 (2008)Google Scholar
  2. 2.
    Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)CrossRefGoogle Scholar
  3. 3.
    Beda, T., Chevalier, Y.: Sur le comportement statique et dynamique des élastomères en grandes déformations. Mécanique industrielle et Matériaux 50(5), 228–231 (1997)Google Scholar
  4. 4.
    Berik, P., Benjeddou, A.: Static experimentation of the piezoceramic d15-shear actuation for sanswich structures with opposite or same poled patches-assembled core and composite faces. Int. J. Smart Nano Mat. 2(4), 230–244 (2011)Google Scholar
  5. 5.
    Bliman, P.A.: Mathematical study of the Dahl’s friction model. Eur. J. Mech. A/Solids 11(6), 835–848 (1992)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bouvier, D., Helic, T., Roze, D.: Représentation en séries de Volterra d’un modèle passif de Haut-parleur électrodynamique avec suspension non-linéaire et perspectives pour identification, Congrès Français d’acoustique, HAL Id: hal-01441060, Le mans; April 2016.
  7. 7.
    Chatain, M.: Comportement physique et thermodynamique en relation avec la structure, Techniques de l’ingénieur, traité plastiques et composites AM1, A3110, 3111, 3112 (1993)Google Scholar
  8. 8.
    Chevalier, Y.: Micromécanique des composites-Prévision en élasticité, en viscoélasticité et à la rupture, Technique de l’ingénieur, traité A7778 et A7780, 22 pages. Paris (1991)Google Scholar
  9. 9.
    Chevallier, G.: Etude des vibrations de broutement provoquées par le frottement sec-Application aux systèmes d’embrayage, Thèse Université P.M .Curie-ISMEP, 171 pages. Paris (Oct 2005).
  10. 10.
    Chevalier, Y., Vinh, J.T.: Mechanical characterization of material and waves dispersion, ISTE Ltd, London (U.K) and John Wiley & Sons, Hoboken (NJ-USA), (2010)Google Scholar
  11. 11.
    Dahl, P.: A solid friction damping of mechanical vibrations. AIAA J. 14, 1675–1682 (1976)CrossRefGoogle Scholar
  12. 12.
    Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)CrossRefGoogle Scholar
  13. 13.
    Ferry, J.D.: Viscoelastic properties of polymers, 3ième edn. Editions John Wiley & Sons, New York (1980)Google Scholar
  14. 14.
    Gacem, H., Chevalier, Y., Dion, J.L., Rezgui, B.: Non-linear dynamic behavior of a preloades thin sanswich plate incorporating Visco-hyperelastic layers. J. Sound Vibrat. 322(4–5), 941–953 (2009)CrossRefGoogle Scholar
  15. 15.
    Gacem, H.: Comportement visco-hyperélastique des élastomères- Viscoélasticité non-linéaire, application aux multicouches, Thèse Université P.M. Curie, Paris (2007)Google Scholar
  16. 16.
    Gacem, H., Chevalier, Y., Dion, J.L., Rezgui, B.: Long term prediction of non-linear viscoelastic creep behavior of elastomers: extended Schapery model. Mech. Ind. 9(3), 407–416 (2009)Google Scholar
  17. 17.
    Germain, P.: Mécanique des milieux continus. Théorie Générale, Editions Masson, Paris (1973)zbMATHGoogle Scholar
  18. 18.
    Haoui, A., Vinh, T., Chevalier, Y.: Application of Hilbert transform in the analysis of non linear structures. In: 2nd International Modal Analysis Conferences. Orland, USA, (Florida) (1984)Google Scholar
  19. 19.
    Huet, C.: Relation between creep and relaxation function in nonlinear viscoelasticity. J. Rheol. 29(3), 247–257 (1985)CrossRefGoogle Scholar
  20. 20.
    Kirchhoff, G.: Über den Einfluß der Wärmeleitung in einem Gas auf die Schallbewegung. Poggendorffs, Ann 134, 177 (1868)Google Scholar
  21. 21.
    Knauss, W.G., Emri, I.J.: Non-linear viscoelasticity based on free volume consideration. Comput. Struct. 13, 123–128 (1981)CrossRefGoogle Scholar
  22. 22.
    Knauss, W.G., Emri, I.J.: Volume change and the non-linear thermo-viscoelastic constitution of polymers. In: Yee, A. (ed.) Polymer Engineering and Sciences, vol. 27, pp. 86–100 (1987)CrossRefGoogle Scholar
  23. 23.
    Lai, J.S., Findley, N.W.: Stress relaxation of non-linear viscoelastic material under uniaxial strain. Trans. Soc. Rheol. 12, 259–280 (1968)CrossRefGoogle Scholar
  24. 24.
    Lene, F.: Technique d’homogénéisation des composites à renforts tissés, Mécanique, matériaux, Electricité, vol. 443 (1990)Google Scholar
  25. 25.
    Lee, G.F., Hartmann, B.: Specific damping capacity for arbitrary loss angle. J. Sound Vibrat. 211(2), 265–272 (1998)CrossRefGoogle Scholar
  26. 26.
    Locket, F.J.: Non-linear viscoelastic solids, Academic Press (1972)Google Scholar
  27. 27.
    Majeed, M., Benjeddou A.: Semi-analytical free-vibrations analysis of piezoelectric adaptive beams using the distributed transfer function approach, structural control ACA structural control and health monitoring, 18(7), 723–736 (2011)CrossRefGoogle Scholar
  28. 28.
    Maugin, G.A.: The method of virtual power in continuum mechanics-Application of coupled fields. Acta Mechanica 35 (1980)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Maugin, G.A.: Non Classical Continuum Mechanics dictionary. In: Advanced Structure Materials, Springer, Singapore (2017)Google Scholar
  30. 30.
    Molinari, G. A.: Sur la relaxation entre fluage et relaxation en viscoélasticité non linéaire, C.R. Acad. Sciences, tome 277, série A, pp. 621–623. Paris (1973)Google Scholar
  31. 31.
    Mullins, L.: Softening of rubber by deformation. Rubber Chem. Technol. 42, 339 (1969)CrossRefGoogle Scholar
  32. 32.
    Naejus, C.: Sur la formulation des problèmes de contact avec frottement de Coulomb, Thèse Université de Poitiers, Sept (1995)Google Scholar
  33. 33.
    Naslin, P.: Isaac Newton. La technique moderne 3–4, 28–35 (1998)Google Scholar
  34. 34.
    O’dowd, N.P., Knauss, W.G., A time dependent large principal deformation of polymers. J. Mech. Phys. Solids 43(5), 771–792 (1995)CrossRefGoogle Scholar
  35. 35.
    Peyret, N., Dion, J.L., Chevallier, G., Argoul, P.: Micro-slip induced damping in planar contact under constant and uniform normal stress. Int. J. Appl. Mech. 02(02), 281–304 (2010)CrossRefGoogle Scholar
  36. 36.
    Pulino-Sagradi, D., Sagradi, M., Martin, J.L.: Noise and vibrations damping of Fe-Cr-X alloys. J. Braz. Soc. Mech. Sci. 23(2), Rio de Janeiro (2001)Google Scholar
  37. 37.
    Renard, J.: Elaboration, microstructure et comportement des matériaux composites à matrice polymère, Traité MIM série polymère, Editions Hermès. Paris (2005)Google Scholar
  38. 38.
    Rouse, P.E.: A Theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21(7) (1953)CrossRefGoogle Scholar
  39. 39.
    Salencon, J.: Mécanique des milieux continus-Concepts généraux, Editions Ellipses de L’école polytechnique. Palaiseau (2007)Google Scholar
  40. 40.
    Schapery, R.A.: Thermodynamical behavior of viscoelastic media with variable properties subjected to cyclic loadin. J. Appl. Mech. 35, 1451–1465 (1964)MathSciNetGoogle Scholar
  41. 41.
    Schapery, R.A.: A thermodynamic constitutive theory and its application to various nonlinear materials. Int. J. Sol. Struct. 2(3), 407–425 (1966)CrossRefGoogle Scholar
  42. 42.
    Soula, M., Chevalier, Y.: La dérivée fractionnaire en rhéologie des polymères: Application aux comportements élastiques et viscoélastiques linéaires et non linéaires des élastomères. ESAIM Proc. 5, 193–204 (1998)CrossRefGoogle Scholar
  43. 43.
    Valanis, K.C., Landel, R.F.: Large axial deformation behavior of filled rubber. Tans. Soc. Rheol. 11(2), 213–256 (1967)Google Scholar
  44. 44.
    Vinh, T., Sorin, P.: Sur la détermination du module complexe d’Young et de l’amortissement des matériaux viscoélastiques par flexion alternée, Sciences et techniques de l’armement, 4ième fascicule, pp. 979–1007 (1963)Google Scholar
  45. 45.
    Zaoustos, S.P., Papanicolaou, G.C.: Study of the effect of fibre orientation on the nonlinear viscoelastic behavior of continuous fibre polymer composites. In: Reifsnider, K.L., Verchery, G. (eds.) Recent Developments in Durability Analysis of Composite Systems, pp. 375–379. Cardon, Fukuda, Balkema, Rotterdam (2000)Google Scholar
  46. 46.
    Zener, C.: Elasticité et anélasticité des métaux, Editions Dunod, pp. 55–100. Paris (1955)Google Scholar
  47. 47.
    Vinh, T., Haoui, A., Fei, B.J., Chevalier, Y.: Extension de l’analyse modale aux systèmes non linéaire par la transformée de Hilbert, Matériaux, Mécanique, Electricité, 404, 405, 405, pp. 5–14 (1984)Google Scholar
  48. 48.
    Wang, Y.C., Ludwigson, M., Lakes, R.S.: Deformation of extreme Viscoelastic metals and composites. Mat. Sci. Eng. A 370, 41–49 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Quartz LaboratoryInstitute Superior of Mechanic of Paris (ISMEP-SUPMECA)Saint OuenFrance

Personalised recommendations