Skip to main content

Hypoglycemic Brain Damage

  • Chapter
  • First Online:

Abstract

Hypoglycemic brain damage is a different global brain insult from cardiac arrest encephalopathy. We here follow the path of glucose from blood to the brain interstitial space, into the cell, through glycolysis into the Krebs cycle, including the consequent new homeostasis in amino acid metabolism that gives rise to increased aspartic acid within cells. Leakage of aspartate massively floods the extracellular space to kill neurons, while continued turning of a truncated form of the Krebs cycle keeps most brain cells alive. Endogenous substrates are utilized, chiefly phospholipids and fatty acids. The duration of tolerable insult is much longer for hypoglycemia than ischemia, which also releases more glutamate than aspartate into the brain interstitium. The neuropathology in humans is not always distinguishable, but if there is dentate gyrus destruction, a very late event in global ischemia, the distinction of hypoglycemic from ischemic damage can be made. Hypoglycemic brain damage occurs in hospitals, attempted suicide and homicide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul-Rahman A, Siesjö BK (1980) Local cerebral glucose consumption during insulin-induced hypoglycemia, and in the recovery period following glucose administration. Acta Physiol Scand 110:149–159

    Article  CAS  PubMed  Google Scholar 

  • Abdul-Rahman A, Agardh C-D, Siesjö BK (1980) Local cerebral blood flow in the rat during severe hypoglycemia and in the recovery period following glucose injection. Acta Physiol Scand 109:307–314

    Article  CAS  PubMed  Google Scholar 

  • Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, Kerr D, Leone P, Krystal JH, Spencer DD, During MJ, Sherwin RS (2002) Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab 22:271–279

    Article  CAS  PubMed  Google Scholar 

  • Agardh C-D, Folbergrová J, Siesjö BK (1978) Cerebral metabolic changes in profound insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem 31:1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Agardh C-D, Chapman AG, Nilsson B, Siesjö BK (1981) Endogenous substrates utilized by rat brain in severe insulin-induced hypoglycemia. J Neurochem 36:490–500

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329:977–986

    Article  Google Scholar 

  • Arzamendi AE, Rajamani U, Jialal I (2014) Pseudoinsulinoma in a white man with autoimmune hypoglycemia due to anti-insulin antibodies: value of the free C-Peptide assay. Am J Clin Pathol 142:689–693

    Article  PubMed  Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with biofeedback modifiers. Biochemistry 7:4030–4034

    Article  CAS  PubMed  Google Scholar 

  • Auer RN (1986) Progress review: hypoglycemic brain damage. Stroke 17:699–708

    Article  CAS  PubMed  Google Scholar 

  • Auer RN (2004) Hypoglycemic brain damage. Forensic Sci Int 146:105–110

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Siesjö BK (1988) Biological differences between ischemia, hypoglycemia, and epilepsy. Ann Neurol 24:699–707

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Siesjö BK (1993) Hypoglycaemia: brain neurochemistry and neuropathology. Baillières Clin Endocrinol Metab 7:611–625

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Wieloch T, Olsson Y, Siesjö BK (1984a) The distribution of hypoglycemic brain damage. Acta Neuropathol 64:177–191

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Olsson Y, Siesjö BK (1984b) Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 33:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985a) The temporal evolution of hypoglycemic brain damage. I. Light- and electron-microscopic findings in the rat cerebral cortex. Acta Neuropathol 67:13–24

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985b) The temporal evolution of hypoglycemic brain damage. II. Light- and electron-microscopic findings in the hippocampal gyrus and subiculum of the rat. Acta Neuropathol 67:25–36

    Article  CAS  PubMed  Google Scholar 

  • Auer R, Kalimo H, Olsson Y, Wieloch T (1985c) The dentate gyrus in hypoglycemia: pathology implicating excitotoxin-mediated neuronal necrosis. Acta Neuropathol 67:279–288

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Hugh J, Cosgrove E, Curry B (1989) Neuropathologic findings in three cases of profound hypoglycemia. Clin Neuropathol 8:63–68

    PubMed  CAS  Google Scholar 

  • Brierley JB, Brown AW, Meldrum BS (1971) The nature and time course of the neuronal alterations resulting from oligaemia and hypoglycemia in the brain of Macaca mulatta. Brain Res 25:483–499

    Article  CAS  PubMed  Google Scholar 

  • Cornford EM, Hyman S, Pardridge WM (1993) An electron microscopic immunogold analysis of developmental up-regulation of the blood-brain barrier GLUT1 glucose transporter. J Cereb Blood Flow Metab 13:841–854

    Article  CAS  PubMed  Google Scholar 

  • Crane PD, Pardridge WM, Braun LD, Oldendorf WH (1985) Two-day starvation does not alter the kinetics of blood–brain barrier transport and phosphorylation of glucose in rat brain. J Cereb Blood Flow Metab 5:40–46

    Article  CAS  PubMed  Google Scholar 

  • Cravioto RO, Massieu H, Izquierdo JJ (1951) Free amino acids in rat brain during insulin shock. Proc Soc Exp Biol Med 78:856–858

    Article  CAS  PubMed  Google Scholar 

  • Feise G, Kogure K, Busto R, Scheinberg P, Reinmuth O (1976) Effect of insulin hypoglycemia upon cerebral energy metabolism and EEG activity in the rat. Brain Res 126:263–280

    Article  Google Scholar 

  • Fischer KF, Lees JA, Newman JH (1986) Hypoglycemia in hospitalized patients. Causes and outcomes. N Engl J Med 315:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Gjedde A, Hansen AJ, Siemkowicz E (1980) Rapid simultaneous determination of regional blood flow and blood brain glucose transfer in brain of rat. Acta Physiol Scand 108:321–330

    Article  CAS  PubMed  Google Scholar 

  • Hakim AM (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann Neurol 16:673–679

    Article  CAS  PubMed  Google Scholar 

  • Kalimo H, Olsson Y (1980) Effect of severe hypoglycemia on the human brain. Acta Neurol Scand 62:345–356

    Article  CAS  PubMed  Google Scholar 

  • Kalimo H, Auer RN, Siesjö BK (1985) The temporal evolution of hypoglycemic brain damage. III. Light and electron microscopic findings in the rat caudoputamen. Acta Neuropathol 67:37–50

    Article  CAS  PubMed  Google Scholar 

  • Kety SS, Woodford RB, Harmel MH, Freyhan FA, Appel KE, Schmidt CF (1948) Cerebral blood flow and metabolism in schizophrenia. The effect of barbiturate semi-narcosis, insulin coma and electroshock. Am J Psychiat 104:765–770

    Article  CAS  PubMed  Google Scholar 

  • Kiessling M, Auer RN, Kleihues P, Siesjö BK (1986) Cerebral protein synthesis during long-term recovery from severe hypoglycemia. J Cereb Blood Flow Metab 6:42–51

    Article  CAS  PubMed  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  CAS  PubMed  Google Scholar 

  • LaManna JC, Harik SI (1985) Regional comparisons of brain glucose influx. Brain Res 326:299–305

    Article  CAS  PubMed  Google Scholar 

  • Lawson EA, Zhang X, Crocker JT, Wang WL, Klibanski A (2009) Hypoglycemia from IGF2 overexpression associated with activation of fetal promoters and loss of imprinting in a metastatic hemangiopericytoma. J Clin Endocrinol Metab 94:2226–2231

    Article  CAS  PubMed  Google Scholar 

  • Lewis LD, Ljunggren B, Norberg K, Siesjö BK (1974) Changes in carbohydrate substrates, amino acids and ammonia in the brain during insulin-induced hypoglycemia. J Neurochem 23:659–671

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KP, Ojelabi OA, De Zutter JK, Carruthers A (2017) Reconciling contradictory findings: Glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters. J Biol Chem 292:21035–21046

    Article  CAS  PubMed  Google Scholar 

  • Mayer-Gross W (1951) Insulin coma therapy of schizophrenia: some critical remarks on Dr. Sakel’s report. J Ment Sci 97:132–135

    Article  CAS  PubMed  Google Scholar 

  • Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF (1985) Sequence and structure of a human glucose transporter. Science 229:941–945

    Article  CAS  PubMed  Google Scholar 

  • Nemoto EM, Hoff JT, Severinghaus JW (1974) Lactate uptake and metabolism by brain during hyperlactatemia and hypoglycemia. Stroke 5:48–53

    Article  CAS  PubMed  Google Scholar 

  • Nevander G, Ingvar M, Auer R, Siesjö BK (1985) Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann Neurol 18:281–290

    Article  CAS  PubMed  Google Scholar 

  • Ng T, Graham DI, Adams JH, Ford I (1989) Changes in the hippocampus and the cerebellum resulting from hypoxic insults: frequency and distribution. Acta Neuropathol 78:438–443

    Article  CAS  PubMed  Google Scholar 

  • Olney JW (1969a) Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesions. J Neuropathol Exp Neurol 28:455–474

    Article  CAS  PubMed  Google Scholar 

  • Olney JW (1969b) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    Article  CAS  PubMed  Google Scholar 

  • Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. J Neuropathol Exp Neurol 30:75–90

    Article  CAS  PubMed  Google Scholar 

  • Patti ME, McMahon G, Mun EC, Bitton A, Holst JJ, Goldsmith J, Hanto DW, Callery M, Arky R, Nose V, Bonner-Weir S, Goldfine AB (2005) Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia 48:2236–2240

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299

    Article  CAS  PubMed  Google Scholar 

  • Pelligrino D, Almquist L-O, Siesjö BK (1981) Effects of insulin-induced hypoglycemia on intracellular pH and impedance in the cerebral cortex of the rat. Brain Res 221:129–147

    Article  CAS  PubMed  Google Scholar 

  • Sakel M (1937) The methodical use of hypoglycemia in the treatment of psychoses. Am J Psychiatr 94:111–129

    Article  Google Scholar 

  • Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    Article  CAS  PubMed  Google Scholar 

  • Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295:E242–E253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ML, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol 64:319–332

    Article  CAS  PubMed  Google Scholar 

  • Suh SW, Aoyama K, Matsumori Y, Liu J, Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54:1452–1458

    Article  CAS  PubMed  Google Scholar 

  • Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321:45–50

    Article  CAS  PubMed  Google Scholar 

  • Sutherland GR, Tyson RL, Auer RN (2008) Truncation of the Krebs cycle during hypoglycemic coma. Med Chem 4:379–385

    Article  CAS  PubMed  Google Scholar 

  • Tews JK, Carter SH, Stone WE (1965) Chemical changes in the brain during insulin hypoglycemia and recovery. J Neurochem 12:679–683

    Article  CAS  PubMed  Google Scholar 

  • Trump BF, Berezesky IK, Chang SH, Phelps PC (1997) The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25:82–88

    Article  CAS  PubMed  Google Scholar 

  • Urion D, Vreman HJ, Weiner MW (1979) Effect of acetate on hypoglycemic seizures in mice. Diabetes 28:1022–1026

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, De Vivo DC (2005) Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol 57:111–118

    Article  CAS  PubMed  Google Scholar 

  • Weil A, Liebert E, Heilbrunn G (1938) Histopathologic changes in the brain in experimental hyperinsulinism. Arch Neurol Psychiat (Chic) 39:467–481

    Article  Google Scholar 

  • Wieloch T (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 230:681–683

    Article  CAS  PubMed  Google Scholar 

  • Won SJ, Jang BG, Yoo BH, Sohn M, Lee MW, Choi BY, Kim JH, Song HK, Suh SW (2012) Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration. J Cereb Blood Flow Metab 32:1086–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Kudo M, Chung H, Minami Y, Ogawa C, Sakaguchi Y, Kitano M, Kawasaki T, Maekawa K (2005) Multiple metastases from a meningeal hemangiopericytoma associated with severe hypoglycemia. J Med Ultrason (2001) 32:187–190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auer, R.N. (2018). Hypoglycemic Brain Damage. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-77495-4_10

Download citation

Publish with us

Policies and ethics