Skip to main content

Applications of MPC to Building HVAC Systems

  • Chapter
  • First Online:
Book cover Handbook of Model Predictive Control

Part of the book series: Control Engineering ((CONTRENGIN))

  • 7282 Accesses

Abstract

Heating, ventilation, and air conditioning (HVAC) systems in buildings are an emerging application area for model predictive control (MPC) due to the significant cost benefits that can be achieved via load shifting in modern electricity markets. In this paper, we discuss some of the opportunities and challenges associated with applying MPC to commercial HVAC systems. After defining the control problem, a decomposition of the centralized MPC is presented and demonstrated for an example system. Recent work at the Stanford University campus is also highlighted to show these ideas in practice, and an outlook for the field is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems—a review of model predictive control (MPC). Build. Environ. 72, 343–355 (2014)

    Article  Google Scholar 

  2. Blair, S.: Editors’ choice and best energy/industrial: stanford energy system innovations. Engineering News-Record (2016). http://www.enr.com/articles/39005-editors-choice-best-energyindustrial-stanford-energy-system-innovations

  3. Braun, J.E.: A near-optimal control strategy for cool storage systems with dynamic electric rates. HVAC R Res. 13(4), 557–580 (2007)

    Article  Google Scholar 

  4. Cai, J., Kim, D., Jaramillo, R., Braun, J., Hu, J.: A general multi-agent control approach for building energy system optimization. Energ. Build. 127, 337–351 (2016)

    Article  Google Scholar 

  5. Christofides, P., Scattolini, R., de la Peña, D., Liu, J.: Distributed model predictive control: a tutorial review and future research directions. Comput. Chem. Eng. 51, 21–41 (2013)

    Article  Google Scholar 

  6. Cole, W.J., Edgar, T.F., Novoselac, A.: Use of model predictive control to enhance the flexibility of thermal energy storage cooling systems. In: American Control Conference (ACC), pp. 2788–2793 (2012)

    Google Scholar 

  7. Department of energy: 2011 buildings energy data book. http://buildingsdatabook.eren.doe.gov/ChapterIntro3.aspx (2012)

  8. Dowling, A.W., Kumar, R., Zavala, V.M.: A multi-scale optimization framework for electricity market participation. Appl. Energ. 190, 147–164 (2017)

    Article  Google Scholar 

  9. ElBsat, M.N., Wenzel, M.J.: Load and electricity rates prediction for building wide optimization applications. In: 4th International High Performance Buildings Conference at Purdue, West Lafayette (2016)

    Google Scholar 

  10. Elliott, M., Rasmussen, B.: Neighbor-communication model predictive control and HVAC systems. In: American Control Conference, Montreal, pp. 3020–3025 (2012)

    Google Scholar 

  11. Henze, G.P.: Energy and cost minimal control of active and passive building thermal storage inventory. J. Solar Ener. Eng. 127(3), 343–351 (2005)

    Article  Google Scholar 

  12. Killian, M., Kozek, M.: Ten questions concerning model predictive control for energy efficient buildings. Build. Environ. 105, 403–412 (2016)

    Article  Google Scholar 

  13. Lamoudi, M.Y., Alamir, M., Béguery, P.: Distributed constrained model predictive control based on bundle method for building energy management. In: 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, pp. 8118–8124 (2011)

    Google Scholar 

  14. Ma, J., Qin, J., Salsbury, T., Xu, P.: Demand reduction in building energy systems based on economic model predictive control. Chem. Eng. Sci. 67(1), 92–100 (2012)

    Article  Google Scholar 

  15. Ma, Y., Matuško, J., Borrelli, F.: Stochastic model predictive control for building HVAC systems: complexity and conservatism. IEEE Trans. Control Syst. Technol. 23(1), 101–116 (2015)

    Article  Google Scholar 

  16. Mendoza-Serrano, D.I., Chmielewski, D.J.: HVAC control using infinite-horizon economic MPC. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp. 6963–6968 (2012)

    Google Scholar 

  17. Mesbah, A.: Stochastic model predictive control. IEEE Control Syst. Mag. 36, 30–44 (2016)

    Article  Google Scholar 

  18. Moroşan, P.D., Bourdais, R., Dumur, D., Buisson, J.: Building temperature regulation using a distributed model predictive control. Energ. Build. 42, 1445–1452 (2010)

    Article  Google Scholar 

  19. Oldewurtel, F., Parisio, A., Jones, C.N., Gyalistras, D., Gwerder, M., Stauch, V., Lehmann, B., Morari, M.: Use of model predictive control and weather forecasts for energy efficient building climate control. Energ. Build. 45, 15–27 (2012)

    Article  Google Scholar 

  20. Patel, N.R., Rawlings, J.B., Wenzel, M.J., Turney, R.D.: Design and application of distributed economic model predictive control for large-scale building temperature regulation. In: 4th International High Performance Buildings Conference at Purdue, West Lafayette (2016)

    Google Scholar 

  21. Patel, N.R., Risbeck, M.J., Rawlings, J.B., Wenzel, M.J., Turney, R.D.: Distributed economic model predictive control for large-scale building temperature regulation. In: American Control Conference, Boston, pp. 895–900 (2016)

    Google Scholar 

  22. Powell, K.M., Sriprasad, A., Cole, W.J., Edgar, T.F.: Heating, cooling, and electrical load forecasting for a large-scale district energy system. Energy 74, 877–885 (2014)

    Article  Google Scholar 

  23. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design, 576 pp. Nob Hill Publishing, Madison (2009). ISBN 978-0-9759377-0-9

    Google Scholar 

  24. Rawlings, J.B., Risbeck, M.J.: Model predictive control with discrete actuators: theory and application. Automatica 78, 258–265 (2017)

    Article  MathSciNet  Google Scholar 

  25. Rawlings, J.B., Stewart, B.T.: Coordinating multiple optimization-based controllers: new opportunities and challenges. J. Process Control 18, 839–845 (2008)

    Article  Google Scholar 

  26. Rawlings, J.B., Patel, N.R., Risbeck, M.J., Maravelias, C.T., Wenzel, M.J., Turney, R.D.: Economic MPC and real-time decision making with application to large-scale HVAC energy systems. Comput. Chem. Eng. 114, 89–98 (2018)

    Article  Google Scholar 

  27. Risbeck, M.J., Maravelias, C.T., Rawlings, J.B., Turney, R.D.: Cost optimization of combined building heating/cooling equipment via mixed-integer linear programming. In: American Control Conference, Chicago, pp. 1689–1694 (2015)

    Google Scholar 

  28. Scherer, H., Pasamontes, M., Guzmán, J., Álvarez, J., Camponogara, E., Normey-Rico, J.: Efficient building energy management using distributed model predictive control. J. Process Control 24(6), 740–749 (2014)

    Article  Google Scholar 

  29. Stagner, J.: Enterprise optimization solution (EOS) cost savings vs. manual plant dispatching. Report on Central Energy Facility, Stanford Energy System Innovations (2016)

    Google Scholar 

  30. Sturzenegger, D., Gyalistras, D., Morari, M., Smith, R.S.: Model predictive climate control of a Swiss office building: implementation, results, and cost-benefit analysis. IEEE Trans. Control Syst. Technol. 24(1), 1–12 (2016)

    Article  Google Scholar 

  31. Touretzky, C.R., Baldea, M.: A hierarchical scheduling and control strategy for thermal energy storage systems. Energ. Build. 110, 94–107 (2016)

    Article  Google Scholar 

  32. Wenzel, M.J., Turney, R.D., Drees, K.H.: Model predictive control for central plant optimization with thermal energy storage. In: 3rd International High Performance Buildings Conference at Purdue, West Lafayette (2014)

    Google Scholar 

  33. Wenzel, M.J., Turney, R.D., Drees, K.H.: Autonomous optimization and control for central plants with energy storage. In: 4th International High Performance Buildings Conference at Purdue, West Lafayette (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishith R. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, N.R., Rawlings, J. (2019). Applications of MPC to Building HVAC Systems. In: Raković, S., Levine, W. (eds) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77489-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77489-3_25

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-77488-6

  • Online ISBN: 978-3-319-77489-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics