Skip to main content

Implicit Non-convex Model Predictive Control

  • Chapter
  • First Online:
Handbook of Model Predictive Control

Part of the book series: Control Engineering ((CONTRENGIN))

Abstract

Model Predictive Control (MPC) techniques often need to be deployed on a nonlinear dynamic model of the system to be controlled. This type of application of MPC is usually referred to as Nonlinear MPC (NMPC). Explicit approaches for NMPC are difficult to deploy, and one typically resorts to computing the solutions to the NMPC scheme on-line, i.e. implicitly. The difficulty then becomes one of performing the fairly heavy computations required to compute the NMPC solutions within the allotted time budget. In this chapter, we will present a summarized overview of the most commonly used techniques to approach this problem. We will focus on the main aspects of these approaches that are arguably keys to deploying real-time NMPC, namely: the problem discretization, path-following methods, and the structure of the underlying linear algebra. Our focus here will be on offering the reader an accessible overview of these crucial aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albersmeyer, J., Diehl, M.: The lifted Newton method and its application in optimization. SIAM J. Optim. 20(3), 1655–1684 (2010)

    Article  MathSciNet  Google Scholar 

  2. Albersmeyer, J.: Adjoint-based algorithms and numerical methods for sensitivity generation and optimization of large scale dynamic systems. PhD thesis, Ruprecht-Karls-Universitität Heidelberg (2010)

    Google Scholar 

  3. Andersson, J., Åkesson, J., Diehl, M.: CasADi – a symbolic package for automatic differentiation and optimal control. In: Forth, S., Hovland, P., Phipps, E., Utke, J., Walther, A. (eds.) Recent Advances in Algorithmic Differentiation, Lecture Notes in Computational Science and Engineering, pp. 297–307. Springer, Berlin (2012)

    Chapter  Google Scholar 

  4. Biegler, L.T.: An overview of simultaneous strategies for dynamic optimization. Chem. Eng. Process. 46, 1043–1053 (2007)

    Article  Google Scholar 

  5. Biegler, L.T.: Nonlinear Programming. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2010)

    Google Scholar 

  6. Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the IFAC World Congress, pp. 242–247. Pergamon Press, Oxford (1984)

    Google Scholar 

  7. Bock, H.G., Diehl, M., Leineweber, D.B., Schlöder, J.P.: Efficient direct multiple shooting in nonlinear model predictive control. In: Keil, F., Mackens, W., Voß, H., Werther, J. (eds.), Scientific Computing in Chemical Engineering II, vol. 2, pp. 218–227. Springer, Berlin (1999)

    Google Scholar 

  8. Bock, H.G., Diehl, M., Leineweber, D.B., Schlöder, J.P.: A direct multiple shooting method for real-time optimization of nonlinear DAE processes. In: Allgöwer, F., Zheng, A. (eds.) Nonlinear Predictive Control. Progress in Systems Theory, vol. 26, pp. 246–267. Birkhäuser, Basel (2000)

    Google Scholar 

  9. Bock, H.G., Diehl, M., Kostina, E.: SQP methods with inexact Jacobians for inequality constrained optimization. IWR-Preprint 04-XX, Universität Heidelberg, Heidelberg (2004)

    Google Scholar 

  10. Bücker, H.M., Petera, M., Vehreschild, A.: Chapter code optimization techniques in source transformations for interpreted languages. In: Advances in Automatic Differentiation, pp. 223–233. Springer, Berlin (2008)

    Google Scholar 

  11. Büskens, C., Maurer, H.: SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control. J. Comput. Appl. Math. 120, 85–108 (2000)

    Article  MathSciNet  Google Scholar 

  12. Diehl, M., Bock, H.G., Schlöder, J.P.: Newton-type methods for the approximate solution of nonlinear programming problems in real-time. In: Di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp. 177–200. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  13. Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., Schlöder, J.P.: Nominal stability of the real-time iteration scheme for nonlinear model predictive control. Technical Report #1910, IMA, University of Minnesota (2003)

    Google Scholar 

  14. Diehl, M., Findeisen, R., Allgöwer, F., Schlöder, J.P., Bock, H.G.: Stability of nonlinear model predictive control in the presence of errors due to numerical online optimization. In: Proceedings of the IEEE Conference on Decision and Control (CDC), Maui, pp. 1419–1424 (2003)

    Google Scholar 

  15. Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., Schlöder, J.P.: Nominal stability of the real-time iteration scheme for nonlinear model predictive control. IEE Proc. Control Theory Appl. 152(3), 296–308 (2005)

    Article  Google Scholar 

  16. Diehl, M., Findeisen, R., Allgöwer, F.: A stabilizing real-time implementation of nonlinear model predictive control. In: Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloemen Waanders, B. (eds.) Real-Time and Online PDE-Constrained Optimization, pp. 23–52. SIAM, Philadelphia (2007)

    Google Scholar 

  17. Domahidi, A., Zgraggen, A., Zeilinger, M.N., Morari, M., Jones, C.N.: Efficient interior point methods for multistage problems arising in receding horizon control. In: Proceedings of the IEEE Conference on Decision and Control (CDC), Maui, December 2012, pp. 668–674

    Google Scholar 

  18. Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy for fast parametric quadratic programming in MPC applications. In: Proceedings of the IFAC Workshop on Nonlinear Model Predictive Control for Fast Systems, Grenoble, pp. 21–30 (2006). It is found on the official website of IFAC but without official version

    Google Scholar 

  19. Ferreau, H.J., Houska, B., Kraus, T., Diehl, M.: Numerical methods for embedded optimisation and their implementation within the ACADO toolkit. In: Mitkowski, W., Tadeusiewicz, R., Ligeza, A., Szymkat, M. (eds.) Proceedings of the 7th Conference Computer Methods and Systems, Krakow, November 2009, pp. 13–29. Oprogramowanie Naukowo-Techniczne

    Google Scholar 

  20. Ferreau, H.J., Kozma, A., Diehl, M.: A parallel active-set strategy to solve sparse parametric quadratic programs arising in MPC. In: Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, Noordwijkerhout (2012)

    Google Scholar 

  21. Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Optim. 8(4), 1132–1152 (1998)

    Article  MathSciNet  Google Scholar 

  22. Forsgren, A., Gill, P.E., Wright, M.H.: Interior point methods for nonlinear optimization. SIAM Rev. 44, 525–597 (2002)

    Article  MathSciNet  Google Scholar 

  23. Frasch, J.V., Wirsching, L., Sager, S., Bock, H.G.: Mixed-level iteration schemes for nonlinear model predictive control. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (2012)

    Google Scholar 

  24. Frasch, J.V., Vukov, M., Ferreau, H.J., Diehl, M.: A dual Newton strategy for the efficient solution of sparse quadratic programs arising in SQP-based nonlinear MPC (2013). Optimization Online 3972

    Google Scholar 

  25. Frison, G.: Algorithms and methods for fast model predictive control. PhD thesis, Technical University of Denmark (DTU) (2015)

    Google Scholar 

  26. Frison, G., Jørgensen, J.B.: A fast condensing method for solution of linear-quadratic control problems. In: Proceedings of the IEEE Conference on Decision and Control (CDC) (2013)

    Google Scholar 

  27. Frison, G., Sorensen, H.B., Dammann, B., Jørgensen, J.B.: High-performance small-scale solvers for linear model predictive control. In: Proceedings of the European Control Conference (ECC), June 2014, pp. 128–133

    Google Scholar 

  28. Garg, D., Patterson, M.A., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010)

    Article  MathSciNet  Google Scholar 

  29. Gay, D.M.: Automatic differentiation of nonlinear AMPL models. In: In Automatic Differentiation of Algorithms: Theory, Implementation and Application, pp. 61–73. SIAM, Philadelphia (1991)

    Google Scholar 

  30. Gill, P., Murray, W., Saunders, M.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)

    Article  MathSciNet  Google Scholar 

  31. Gros, S., Quirynen, R., Diehl, M.: An improved real-time NMPC scheme for wind turbine control using spline-interpolated aerodynamic coefficients. In: Proceedings of the IEEE Conference on Decision and Control (CDC) (2014)

    Google Scholar 

  32. Gros, S., Quirynen, R., Schild, A., Diehl, M.: Implicit integrators for linear dynamics coupled to a nonlinear static feedback and application to wind turbine control. In: IFAC Conference (2017)

    Google Scholar 

  33. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396 (2005)

    Article  Google Scholar 

  34. Houska, B., Ferreau, H.J., Diehl, M.: An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecondrange. Automatica 47(10), 2279–2285 (2011)

    Article  MathSciNet  Google Scholar 

  35. Jongen, H.Th., Weber, G.W.: On parametric nonlinear programming. Ann. Oper. Res. 27, 253–283 (1990)

    Article  MathSciNet  Google Scholar 

  36. Kirches, C., Wirsching, L., Sager, S., Bock, H.G.: Efficient numerics for nonlinear model predictive control. In: Recent Advances in Optimization and Its Applications in Engineering, pp. 339–357. Springer, Berlin (2010)

    Google Scholar 

  37. Kirches, C., Wirsching, L., Bock, H.G., Schlöder, J.P.: Efficient direct multiple shooting for nonlinear model predictive control on long horizons. J. Process Control 22(3), 540–550 (2012)

    Article  Google Scholar 

  38. Kouzoupis, D., Ferreau, H.J., Peyrl, H., Diehl, M.: First-order methods in embedded nonlinear model predictive control. In: Proceedings of the European Control Conference (ECC) (2015)

    Google Scholar 

  39. Kouzoupis, D., Quirynen, R., Frasch, J.V., Diehl, M.: Block condensing for fast nonlinear MPC with the dual Newton strategy. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC) (2015)

    Google Scholar 

  40. Kvasnica, M., Rauova, I., Miroslav, F.: Automatic code generation for real-time implementation of model predictive control. In: Proceedings of the IEEE International Symposium on Computer-Aided Control System Design, Yokohama (2010)

    Google Scholar 

  41. Leibfritz, F., Sachs, E.W.: Inexact SQP interior point methods and large scale optimal control problems. SIAM J. Control Optim. 38(1), 272–293 (2006)

    Article  MathSciNet  Google Scholar 

  42. Liu, X., Sun, J.: A robust primal-dual interior-point algorithm for nonlinear programs. SIAM J. Optim. 14(4), 1163–1186 (2004)

    Article  MathSciNet  Google Scholar 

  43. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MathSciNet  Google Scholar 

  44. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  45. Pantoja, J.F.A.D., Mayne, D.Q.: Sequential quadratic programming algorithm for discrete optimal control problems with control inequality constraints. Int. J. Control 53, 823–836 (1991)

    Article  MathSciNet  Google Scholar 

  46. Potra, F.A., Wright, S.J.: Interior-point methods. J. Comput. Appl. Math. 124, 281–302 (2000)

    Article  MathSciNet  Google Scholar 

  47. Potschka, A.: A direct method for the numerical solution of optimization problems with time-periodic PDE constraints. PhD thesis, University of Heidelberg (2011)

    Google Scholar 

  48. Quirynen, R.: Automatic code generation of Implicit Runge-Kutta integrators with continuous output for fast embedded optimization. Master’s thesis, KU Leuven, 2012

    Google Scholar 

  49. Quirynen, R., Vukov, M., Diehl, M.: Auto generation of implicit integrators for embedded NMPC with microsecond sampling times. In: Lazar, M., Allgöwer, F. (eds.) Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, pp. 175–180 (2012)

    Google Scholar 

  50. Quirynen, R., Gros, S., Diehl, M.: Efficient NMPC for nonlinear models with linear subsystems. In: Proceedings of the IEEE Conference on Decision and Control (CDC), pp. 5101–5106 (2013)

    Google Scholar 

  51. Quirynen, R., Gros, S., Diehl, M.: Inexact Newton based lifted implicit integrators for fast nonlinear MPC. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC), pp. 32–38 (2015)

    Google Scholar 

  52. Quirynen, R., Gros, S., Diehl, M.: Lifted implicit integrators for direct optimal control. In: Proceedings of the IEEE Conference on Decision and Control (CDC) (2015)

    Google Scholar 

  53. Quirynen, R., Gros, S., Diehl, M.: Inexact newton-type optimization with iterated sensitivities. SIAM J. Optim. (2017)

    Google Scholar 

  54. Quirynen, R., Gros, S., Houska, B., Diehl, M.: Lifted collocation integrators for direct optimal control in ACADO toolkit. Mathematical Programming Computation (2017)

    Google Scholar 

  55. Quirynen, R., Houska, B., Diehl, M.: Efficient symmetric hessian propagation for direct optimal control. J. Process Control (2017)

    Google Scholar 

  56. Rao, C.V., Wright, S.J., Rawlings, J.B.: Application of interior-point methods to model predictive control. J. Optim. Theory Appl. 99, 723–757 (1998)

    Article  MathSciNet  Google Scholar 

  57. Schäfer, A.A.S., Bock, H.G., Schlöder, J.P., Leineweber, D.B.: An exact Hessian SQP method for ill-conditioned optimal control problems. IWR-Preprint 01-XX, Universität Heidelberg (2001)

    Google Scholar 

  58. Schmid, C., Biegler, L.T.: Quadratic programming methods for reduced Hessian SQP. Comput. Chem. Eng. 18(9), 817–832 (1994)

    Article  Google Scholar 

  59. Shahzad, A., Goulart, P.J.: A new hot-start interior-point method for model predictive control. In: Proceedings of the IFAC World Congress (2011)

    Google Scholar 

  60. Steinbach, M.C.: A structured interior point SQP method for nonlinear optimal control problems. In: Bulirsch, R., Kraft, D. (eds.) Computation Optimal Control, pp. 213–222. Birkhäuser, Basel (1994)

    Chapter  Google Scholar 

  61. Steinbach, M.C.: Structured interior point SQP methods in optimal control. Z. Angew. Math. Mech. 76(S3), 59–62 (1996)

    MathSciNet  MATH  Google Scholar 

  62. von Stryk, O.: Numerical solution of optimal control problems by direct collocation. In: Optimal Control: Calculus of Variations, Optimal Control Theory and Numerical Methods, vol. 129. Bulirsch et al., 1993

    Google Scholar 

  63. Wächter, A.: An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering. PhD thesis, Carnegie Mellon University (2002)

    Google Scholar 

  64. Walther, A.: Automatic differentiation of explicit Runge-Kutta methods for optimal control. Comput. Optim. Appl. 36(1), 83–108 (2006)

    Article  MathSciNet  Google Scholar 

  65. Wirsching, L.: An SQP Algorithm with inexact derivatives for a direct multiple shooting method for optimal control problems. Master’s thesis, University of Heidelberg (2006)

    Google Scholar 

  66. Zanelli, A., Quirynen, R., Diehl, M.: An efficient inexact NMPC scheme with stability and feasibility guarantees. In: Proceedings of 10th IFAC Symposium on Nonlinear Control Systems, Monterey, August 2016

    Google Scholar 

  67. Zanelli, A., Quirynen, R., Jerez, J., Diehl, M.: A homotopy-based nonlinear interior-point method for NMPC. In: Proceedings of 20th IFAC World Congress, Toulouse, July 2017

    Google Scholar 

  68. Zavala, V.M., Biegler, L.T.: Nonlinear programming sensitivity for nonlinear state estimation and model predictive control. In: International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control (2008)

    Google Scholar 

  69. Zavala, V.M., Biegler, L.T.: The advanced step NMPC controller: optimality, stability and robustness. Automatica 45, 86–93 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Gros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gros, S. (2019). Implicit Non-convex Model Predictive Control. In: Raković, S., Levine, W. (eds) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77489-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77489-3_14

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-77488-6

  • Online ISBN: 978-3-319-77489-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics