Skip to main content

Model Predictive Control of Polynomial Systems

  • Chapter
  • First Online:
Handbook of Model Predictive Control

Part of the book series: Control Engineering ((CONTRENGIN))

Abstract

This chapter describes the design of nonlinear model predictive control (MPC) for polynomial systems. Polynomial systems arise in many applications, including in power generation, automotives, aircraft, magnetic levitation, chemical reactors, and biological networks. Furthermore, general nonlinear dynamical systems can usually be rewritten exactly as polynomial systems or approximated as polynomial systems using Taylor series. MPC for discrete-time polynomial systems is formulated as a polynomial program. Hierarchical semidefinite programing relaxation methods are discussed for solving these polynomial programs to global optimality. Then, the methods for fast polynomial MPC are described, including convexification formulations for input-affine systems and explicit algorithms using algebraic geometry methods. Methods are then described for converting general nonlinear dynamical systems into polynomial systems using Taylor’s theorem, and an illustrative simulation example is presented for the practical implementation of Taylor’s theorem for bounding control trajectories. Finally, future directions for research are proposed, including real-time, output-feedback, and robust/stochastic polynomial MPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allgöwer, F., Findeisen, R., Nagy, Z.K.: Nonlinear model predictive control: from theory to application. J. Chin. Inst. Chem. Eng. 35, 299–315 (2004)

    Google Scholar 

  2. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)

    Article  MathSciNet  Google Scholar 

  3. Camacho, E.F., Bordons, C.: Nonlinear model predictive control: an introductory review. In: Findeisen, R., Allgöwer, F., Biegler, L. (eds.) Assessment and Future Directions of Nonlinear Model Predictive Control, pp. 1–16. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Chesi, G.: Estimating the domain of attraction for non-polynomial systems via LMI optimizations. Automatica 45(6), 1536–1541 (2009)

    Article  MathSciNet  Google Scholar 

  5. Choi, M.-D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: Proceedings of the Symposia in Pure Mathematics, vol. 58, pp. 103–126 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Ebenbauer, C., Allgöwer, F.: Analysis and design of polynomial control systems using dissipation inequalities and sum of squares. Comput. Chem. Eng. 30(10), 1590–1602 (2006)

    Article  Google Scholar 

  7. Fotiou, I.A., Rostalski, P., Parrilo, P.A., Morari, M.: Parametric optimization and optimal control using algebraic geometry methods. Int. J. Control 79(11), 1340–1358 (2006)

    Article  Google Scholar 

  8. Harinath, E., Foguth, L.C., Paulson, J.A., Braatz, R.D.: Nonlinear model predictive control using polynomial optimization methods. In: Proceedings of the American Control Conference, pp. 1–6 (2016)

    Google Scholar 

  9. Henrion, D., Lasserre, J.B.: GloptiPoly: global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw. 29(2), 165–194 (2003)

    Article  MathSciNet  Google Scholar 

  10. Ichihara, H.: State feedback synthesis for polynomial systems with bounded disturbances. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 2520–2525 (2008)

    Google Scholar 

  11. Ichihara, H.: Optimal control for polynomial systems using matrix sum of squares relaxations. IEEE Trans. Autom. Control 54(5), 1048–1053 (2009)

    Article  MathSciNet  Google Scholar 

  12. Kim, S., Kojima, M., Waki, H.: Generalized Lagrangian duals and sums of squares relaxations of sparse polynomial optimization problems. SIAM J. Optim. 15(3), 697–719 (2005)

    Article  MathSciNet  Google Scholar 

  13. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  14. Lasserre, J.B.: Semidefinite programming vs. LP relaxations for polynomial programming. Math. Oper. Res. 27(2), 347–360 (2002)

    Article  Google Scholar 

  15. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, pp. 284–289 (2004)

    Google Scholar 

  16. Maier, C., Böhm, C., Deroo, F., Allgöwer, F.: Predictive control for polynomial systems subject to constraints using sum of squares. In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 3433–3438 (2010)

    Google Scholar 

  17. Mayne, D.: Nonlinear model predictive control: challenges and opportunities. In: Allgöwer, F., Zheng, A. (eds.) Nonlinear Model Predictive Control, pp. 23–44. Springer, Berlin (2000)

    Chapter  Google Scholar 

  18. Papachristodoulou, A., Prajna, S.: Analysis of non-polynomial systems using the sum of squares decomposition. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control, pp. 23–43. Springer, Berlin (2005)

    Chapter  Google Scholar 

  19. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology, Pasadena (2000)

    Google Scholar 

  20. Paulson, J.A., Harinath, E., Foguth, L.C., Braatz, R.D.: Nonlinear model predictive control of systems with probabilistic time-invariant uncertainties. In: Proceedings of the 5th IFAC Conference on Nonlinear Model Predictive Control, pp. 16–25 (2015)

    Google Scholar 

  21. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 741–746 (2002)

    Google Scholar 

  22. Prajna, S., Papachristodoulou, A., Wu, F.: Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach. In: Proceedings of the 5th Asian Control Conference, pp. 157–165 (2004)

    Google Scholar 

  23. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  Google Scholar 

  24. Raff, T., Findeisen, R., Ebenbauer, C., Allgöwer, F.: Model predictive control for discrete time polynomial control systems: a convex approach. In: Proceedings of the 2nd IFAC Symposium on System, Structure and Control, pp. 158–163 (2004)

    Google Scholar 

  25. Raković, S.V.: Invention of prediction structures and categorization of robust MPC syntheses. In: Proceedings of the 4th IFAC Conference on Nonlinear Model Predictive Control, pp. 245–273 (2012)

    Google Scholar 

  26. Rawlings, J.B.: Tutorial overview of model predictive control. IEEE Control Syst. 20(3), 38–52 (2000)

    Article  Google Scholar 

  27. Rostalski, P., Fotiou, I.A., Bates, D.J., Beccuti, A.G., Morari, M.: Numerical algebraic geometry for optimal control applications. SIAM J. Optim. 21(2), 417–437 (2011)

    Article  MathSciNet  Google Scholar 

  28. Scokaert, P.O., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Autom. Control 44(3), 648–654 (1999)

    Article  MathSciNet  Google Scholar 

  29. Shor, N.: Class of global minimum bounds of polynomial functions. Cybern. Syst. Anal. 23(6), 731–734 (1987)

    Article  Google Scholar 

  30. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)

    Google Scholar 

  31. Tanartkit, P., Biegler, L.T.: A nested, simultaneous approach for dynamic optimizations – I. Comput. Chem. Eng. 20(6–7), 735–741 (1996)

    Article  Google Scholar 

  32. Tibken, B.: Estimation of the domain of attraction for polynomial systems via LMIs. In: Proceedings of the 39th IEEE Conference on Decision and Control, pp. 3860–3864 (2000)

    Google Scholar 

  33. Zheng, A.: A computationally efficient nonlinear MPC algorithm. In: Proceedings of the American Control Conference, pp. 1623–1627 (1997)

    Google Scholar 

Download references

Acknowledgements

Funding is acknowledged from the Novartis-MIT Center for Continuous Pharmaceutical Manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Braatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harinath, E., Foguth, L.C., Paulson, J.A., Braatz, R.D. (2019). Model Predictive Control of Polynomial Systems. In: Raković, S., Levine, W. (eds) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77489-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77489-3_10

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-77488-6

  • Online ISBN: 978-3-319-77489-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics