Skip to main content

Cell Transport at Nanoscale Dimensions

  • Chapter
  • First Online:
Nanoscale Biophysics of the Cell
  • 827 Accesses

Abstract

A cell has various components. The classified components are composed of various sub-components. These components and sub-components are either static on average but fluctuating around the equilibrium states, or under continuous movement, so are in dynamic state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Lewis, B.A; Engelman, D.M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol., 1983, 166, 211–217.

    Google Scholar 

  • Benz, R.; Fröhlich, Läuger, P.; Montal, M. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Acta, 1975, 394, 323–334.

    Google Scholar 

  • Simon S A, McIntosh T J and Latorre R 1982 Science 216 65–7.

    Google Scholar 

  • Harper, P.E.; Mannock, D.A.; Lewis, R.N.A.H.; McElhaney, R.N.; Gruner, S.M. X-Ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases. Biophys. J., 2001, 81, 2693–2706.

    Google Scholar 

  • M. O. Eze. Phase Transitions in Phospholipid Bilayers: Lateral Phase Separations Play Vital Roles in Biomembranes. BIOCHEMICAL EDUCATION 19(4) 1991.

    Google Scholar 

  • Einstein, A. (1905). “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”. Annalen der Physik (in German) 322 (8): 549–560. Bibcode:1905AnP…322..549E. https://doi.org/10.1002/andp.19053220806.

  • von Smoluchowski, M. (1906). “Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen”. Annalen der Physik (in German) 326 (14): 756–780. Bibcode:1906AnP…326..756 V. https://doi.org/10.1002/andp.19063261405.

  • S. Achuthan, B.J. Chung, P. Ghosh, V. Rangachari, and A. Vaidya. A modified Stokes-Einstein equation for Aβ aggregation. BMC Bioinformatics 2011, 12(Suppl 10):S13.

    Google Scholar 

  • Ashrafuzzaman, M., 2015a. Diffusion across cell phase states. Biomedical Sci. Today. 1:e4.

    Google Scholar 

  • Ashrafuzzaman, M., 2015b. Phenomenology and energetics of diffusion across cell phase states. Saudi J. of Biol. Sci., 22: 666–673.

    Google Scholar 

  • Quemada D: Rheology of concentrated disperse systems. I. Minimum energy dissipation principle and viscosity-concentration relationship. Rheologica Acta 1977, 16(1):82–94.

    Google Scholar 

  • Quemada D: Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited. European Physical Journal of Applied Physics 1998, 1(1):119–127.

    Google Scholar 

  • Lee JD, So JH, Yang SM: Rheological behavior and stability of concentrated silica suspensions. Journal of Rheology 1999, 43(5):1117–1140.

    Google Scholar 

  • Wolthers W, Van den Ende D, Duits MHG, Mellema J: The viscosity and sedimentation of aggregating colloidal dispersions in a Couette flow. Journal of Rheology 1996, 40(1):55–67.

    Google Scholar 

  • C-Y. Tseng, Md. Ashrafuzzaman, J. Mane, J. Kapty, J. Mercer, J. Tuszynski, Entropic fragment based approach to aptamer design. Chem Biol Drug Des (2011) 78, 1–13.

    Google Scholar 

  • Ashrafuzzaman M., Tseng C.Y., Kapty J., Mercer J.R., Tuszynski J.A. A computationally designed DNA aptamer template with specific binding to phosphatidylserine. Nucleic Acid Ther. 2013 Dec; 23(6):418–26.

    Google Scholar 

  • Ashrafuzzaman M., Beck H. 2004a. Vortex dynamics in two-dimensional Josephson junction arrays, (University of Neuchatel, http://doc.rero.ch/record/2894?ln=fr), ch 5, p 85.

  • M Ashrafuzzaman, H Beck. 2004b. Vortex dynamics in dilute two-dimensional Josephson junction arrays. J. Magnetism Magnetic Materials 272, 284–285.

    Google Scholar 

  • Ashrafuzzaman, M., Tseng, C.-Y., Duszyk, M., Tuszynski, J. Chemotherapy Drugs Form Ion Pores in Membranes Due to Physical Interactions with Lipids. Chem. Biol. Drug Des., Volume 80, Issue 6, December 2012, Pages 992–1002.

    Google Scholar 

  • Ashrafuzzaman, M., Tseng C.Y., Tuszynski J.A. Regulation of channel function due to physical energetic coupling with a lipid bilayer. Biochem. Biophys. Res. Commun. 2014 Mar 7;445(2):463–8.

    Google Scholar 

  • CASE, D.A., DARDEN, T.A., CHEATHAM, T.E. III, SIMMERLING, C.L., WANG, J., DUKE, R.E., LUO, R., CROWLEY, M., WALKER, R.C., ZHANG, W., et al. (2008). AMBER 10. (University of California, San Francisco).

    Google Scholar 

  • CASE, D.A., DARDEN, T.A., CHEATHAM, T.E. III, SIMMERLING, C.L., WANG, J., DUKE, R.E., LUO, R., CROWLEY, M., WALKER, R.C., ZHANG, W., et al. (2010). AMBER 11. (University of California, San Francisco).

    Google Scholar 

  • P. P. Dhar and Md. Ashrafuzzaman. CELL MEMBRANE REGULATES THE MYCORRHIZAL FUNGAL TRANSPORT OF NUTRIENTS. 2014 (to be submitted).

    Google Scholar 

  • Koske, R.E. & Gemma, J. N. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92: 486–505.

    Google Scholar 

  • Cavagnaro, T.R., Gao, L.-L., Smith, A.F. and Smith, S.E. (2001). Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol. 151: 469–475.

    Google Scholar 

  • Dickson, S. (2004) The Arum–Paris continuum of mycorrhizalsymbioses. New Phytol. 163: 187–200.

    Google Scholar 

  • Pumplin, N., and Harrison, M.J. (2009). Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol. 151: 809–819.

    Google Scholar 

  • Ferrol, N.; J.M. Barea & C. Azcon-Aguilar. 2000. Molecular approaches to study plasma membrane HC-ATPases inarbuscular mycorrhizas, Plant and Soil 226: 219–225.

    Google Scholar 

  • Asuncion Morte and Mario Honrubia, 2004. Ultrastructure of the mycorrhiza formed by Tetraclinisarticulata (Vahl) Masters (Cupressaceae)Anales de Biologia 26: 179–190.

    Google Scholar 

  • Redecker, D.; Schüßler, A.; Stockinger, H.; Stürmer, S.L.; Morton, J. B. & Walker, C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531.

    Google Scholar 

  • M. Ashrafuzzaman. Theoretical and computational understanding of the cell membrane regulation of the mycorrhizal fungal transport of nutrients. 2016 (to be submitted).

    Google Scholar 

  • Ashrafuzzaman, M., Tuszynski, J., Membrane Biophysics, Springer (Heidelberg), 2012a, ISSN 1618-7210, ISBN 978-3-642-16104-9 ISBN 978-3-642-16105-6 (eBook), https://doi.org/10.1007/978-3-642-16105-6.

  • Ashrafuzzaman, M., and J. A. Tuszynski. 2012b. Regulation of channel function due to coupling with a lipid bilayer, J. Comput. Theor. Nanosci. 9: 564–570.

    Google Scholar 

  • Perozo, E., Cortes, D.M., Sompornpisut, P., Kloda, A., and Martinac, B. 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942–948.

    Google Scholar 

  • Md. Ashrafuzzaman, O.S. Andersen, R.N. McElhaney. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochimica et Biophysica Acta 1778 (2008) 2814–2822.

    Google Scholar 

  • R. Latorre, R. Alvarez, Voltage-dependent channels in planar lipid bilayer membranes, Physiol. Rev. 61 (1981) 77–150.

    Google Scholar 

  • Lundbæk J A, Birn P, Tape S E, Toombes G E, Sogaard R, Koeppe R E II, Gruner S M, Hansen A J and Andersen O S. 2005. Mol. Pharmacol. 68 680–9.

    Google Scholar 

  • Md Ashrafuzzaman, M A Lampson, D V. Greathouse, R E. Koeppe II, and O S Andersen. Manipulating lipid bilayer material properties using biologically active amphipathic molecules. J. Phys.: Condens. Matter 18 (2006) S1235–S1255.

    Google Scholar 

  • Gruner S M 1985 Proc. Natl Acad. Sci. USA 82 3665–9.

    Google Scholar 

  • Per Greisen, Jr., Kevin Lum, Md. Ashrafuzzaman, Denise V. Greathouse, Olaf S. Andersen, and Jens A. Lundbæk. Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling. PNAS, August 2, 2011, vol. 108, 12717–12722.

    Google Scholar 

  • Alexander, T., Toth, R., Meier, R. and Weber, H.C. (1989) Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular-arbuscular mycorrhizae in grasses. C an. J. Bot. 67: 2505–2513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ashrafuzzaman .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashrafuzzaman, M. (2018). Cell Transport at Nanoscale Dimensions. In: Nanoscale Biophysics of the Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-77465-7_6

Download citation

Publish with us

Policies and ethics