Molecular Machines of the Cell

Chapter

Abstract

Cell is a chemical machine, first proposed by Loeb in 1906. Wilson’s opinion suggested that ‘the specificity of each kind of cell depends essentially on what we call its organization, i.e., upon the construction of the cell machine’ (Wilson in The Cell in Development and Heredity. The Macmillan Company, New York, 1925).

References

  1. Wilson, E.B. The Cell in Development and Heredity. 3rd ed. New York: The Macmillan Company; 1925Google Scholar
  2. Taylor, E.W. E.B. Wilson Lecture: The Cell as Molecular Machine. Mol Biol Cell. 2001 Feb; 12(2): 251–254Google Scholar
  3. Dunkle J.A., Cate J.H. (2010) Ribosome structure and dynamics during translocation and termination. Annu. Rev. Biophys. 39:227–244Google Scholar
  4. Shoji S., Walker S.E., Fredrick K. (2009) Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem. Biol. 4:93–107Google Scholar
  5. Frank J. Jr., Gonzalez R.L. (2010) Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu. Rev. Biochem. 79:381–412Google Scholar
  6. Marina V. Rodnina, Wolfgang Wintermeyer. The ribosome as a molecular machine: the mechanism of tRNA–mRNA movement in translocation. Biochemical Society Transactions Apr 01, 2011, 39 (2) 658–662;  https://doi.org/10.1042/bst0390658
  7. Shoji S., Walker S.E., Fredrick K. 2006. Reverse translocation of tRNA in the ribosome. Mol. Cell 24:931–942Google Scholar
  8. Fredrick K., Noller H.F. 2003. Catalysis of ribosomal translocation by sparsomycin. Science 300:1159–1162Google Scholar
  9. Gavrilova L.P., Kostiashkina O.E., Koteliansky V.E., Rutkevitch N.M., Spirin A.S. (1976). Factor-free (‘non-enzymic’) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J. Mol. Biol. 101:537–552Google Scholar
  10. Konevega A.L., Fischer N., Semenkov Y.P., Stark H., Wintermeyer W., Rodnina M.V. (2007) Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nat. Struct. Mol. Biol. 14:318–324Google Scholar
  11. Cornish P.V., Ermolenko D.N., Noller H.F., Ha T. (2008). Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30:578–588Google Scholar
  12. Blanchard S.C., Kim H.D., Gonzalez R.L. Jr., Puglisi J.D., Chu S. (2004). tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. U.S.A. 101:12893–12898Google Scholar
  13. Fischer N., Konevega A.L., Wintermeyer W., Rodnina M.V., Stark H. (2010). Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–333Google Scholar
  14. J. Frank. Molecular Machines in Biology. Workshop of the Cell. Editor: Joachim Frank, December, 2011. Cambridge University PressGoogle Scholar
  15. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. ISBN-10: 0-8153-3218-1ISBN-10: 0-8153-4072-9Google Scholar
  16. Nobutaka Hirokawa, Yasuko Noda, Yosuke Tanaka & Shinsuke Niwa. Kinesin superfamily motor proteins and intracellular transport. 2009. Nature Reviews Molecular Cell Biology 10, 682–696Google Scholar
  17. O’Connell C, B., M. J. Tyska, and M. S. Mooseker. (2007). Myosin at work: Motor adaptations for a variety of cellular functions. Biochim Biophys Acta 1773(5), 615–630Google Scholar
  18. J.D. Jontes, R.A. Milligan, T.D. Pollard, E.M. Ostap. Kinetic characterization of brush border myosin-I ATPase Proc. Natl. Acad. Sci. U. S. A., 94 (1997), pp. 14332–14337Google Scholar
  19. E.M. Ostap, T.D. Pollard. Biochemical kinetic characterization of the Acanthamoeba myosin-I ATPase. J. Cell Biol., 132 (1996), pp. 1053–1060Google Scholar
  20. J.S. Wolenski, S.M. Hayden, P. Forscher, M.S. Mooseker, Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry, 122 (1993) 613–621Google Scholar
  21. K. Collins, J.R. Sellers, P. Matsudaira. Calmodulin dissociation regulates brush border myosin I (110-kD-calmodulin) mechanochemical activity in vitro. J. Cell Biol., 110 (1990), pp. 1137–1147Google Scholar
  22. M.S. Mooseker, T.R. Coleman. The 110-kD protein–calmodulin complex of the intestinal microvillus (brush border myosin I) is a mechanoenzyme. J. Cell Biol., 108 (1989), pp. 2395–2400Google Scholar
  23. M. El Mezgueldi, N. Tang, S.S. Rosenfeld, E.M. Ostap. The kinetic mechanism of Myo1e (human myosin-IC). J. Biol. Chem., 277 (2002), pp. 21514–21521Google Scholar
  24. T. Lin, N. Tang, E.M. Ostap. Biochemical and motile properties of Myo1b splice isoforms. J. Biol. Chem., 280 (2005), pp. 41562–41567Google Scholar
  25. D.E. Harris, D.M. Warshaw. Smooth and skeletal muscle myosin both exhibit low duty cycles at zero load in vitro. J. Biol. Chem., 268 (1993), pp. 14764–14768Google Scholar
  26. T.Q. Uyeda, S.J. Kron, J.A. Spudich. Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin. J. Mol. Biol., 214 (1990), pp. 699–710Google Scholar
  27. D.M. Warshaw, J.M. Desrosiers, S.S. Work, K.M. Trybus. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J. Cell Biol., 111 (1990), pp. 453–463Google Scholar
  28. M. Kovacs, F. Wang, A. Hu, Y. Zhang, J.R. Sellers. Functional divergence of human cytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform. J. Biol. Chem., 278 (2003), pp. 38132–38140Google Scholar
  29. F. Wang, E.V. Harvey, M.A. Conti, D. Wei, J.R. Sellers. A conserved negatively charged amino acid modulates function in human nonmuscle myosin IIA. Biochemistry, 39 (2000), pp. 5555–5560Google Scholar
  30. S.S. Rosenfeld, J. Xing, L.Q. Chen, H.L. Sweeney. Myosin IIb is unconventionally conventional. J. Biol. Chem., 278 (2003), pp. 27449–27455Google Scholar
  31. F. Wang, M. Kovacs, A. Hu, J. Limouze, E.V. Harvey, J.R. Sellers. Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance. J. Biol. Chem., 278 (2003), pp. 27439–27448Google Scholar
  32. M.D. Pato, J.R. Sellers, Y.A. Preston, E.V. Harvey, R.S. Adelstein. Baculovirus expression of chicken nonmuscle heavy meromyosin II-B. Characterization of alternatively spliced isoforms. J. Biol. Chem., 271 (1996), pp. 2689–2695Google Scholar
  33. S. Komaba, A. Inoue, S. Maruta, H. Hosoya, M. Ikebe. Determination of human myosin III as a motor protein having a protein kinase activity. J. Biol. Chem., 278 (2003), pp. 21352–21360Google Scholar
  34. E.M. De La Cruz, A.L. Wells, S.S. Rosenfeld, E.M. Ostap, H.L. Sweeney. The kinetic mechanism of myosin V. Proc. Natl. Acad. Sci. U. S. A., 96 (1999), pp. 13726–13731Google Scholar
  35. A.D. Mehta, R.S. Rock, M. Rief, S.A. Spudich, M.S. Mooseker, R.E. Cheney. Myosin-V is a processive actin-based motor. Nature, 400 (1999), pp. 590–593Google Scholar
  36. E.B. Krementsova, A.R. Hodges, H. Lu, K.M. Trybus. Processivity of chimeric class V myosins. J. Biol. Chem. (2006), 281(9):6079–86Google Scholar
  37. R.E. Cheney, M.K. O’Shea, J.E. Heuser, M.V. Coelho, J.S. Wolenski, E.M. Espreafico, P. Forscher, R.E. Larson, M.S. Mooseker. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell, 75 (1993), pp. 13–23Google Scholar
  38. S. Watanabe, K. Mabuchi, R. Ikebe, M. Ikebe. Mechanoenzymatic characterization of human Myosin vb. Biochemistry, 45 (2006), pp. 2729–2738Google Scholar
  39. S.L. Reck-Peterson, M.J. Tyska, P.J. Novick, M.S. Mooseker. The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin-based motors. J. Cell Biol., 153 (2001), pp. 1121–1126Google Scholar
  40. J. Toth, M. Kovacs, F. Wang, L. Nyitray, J.R. Sellers. Myosin V from Drosophila reveals diversity of motor mechanisms within the myosin V family. J. Biol. Chem., 280 (2005), pp. 30594–30603Google Scholar
  41. E.M. De La Cruz, E.M. Ostap, H.L. Sweeney. Kinetic mechanism and regulation of myosin VI. J. Biol. Chem., 276 (2001), pp. 32373–32381Google Scholar
  42. C.A. Morris, A.L. Wells, Z. Yang, L.Q. Chen, C.V. Baldacchino, H.L. Sweeney. Calcium functionally uncouples the heads of myosin VI. J. Biol. Chem., 278 (2003), pp. 23324–23330Google Scholar
  43. A.L. Wells, A.W. Lin, L.Q. Chen, D. Safer, S.M. Cain, T. Hasson, B.O. Carragher, R.A. Milligan, H.L. Sweeney. Myosin VI is an actin-based motor that moves backwards. Nature, 401 (1999), pp. 505–508Google Scholar
  44. M. Yoshimura, K. Homma, J. Saito, A. Inoue, R. Ikebe, M. Ikebe. Dual regulation of mammalian myosin VI motor function. J. Biol. Chem., 276 (2001), pp. 39600–39607Google Scholar
  45. S. Watanabe, R. Ikebe, M. Ikebe. Drosophila myosin VIIA is a high duty ratio motor with a unique kinetic mechanism. J. Biol. Chem., 281 (2006), pp. 7151–7160Google Scholar
  46. A. Inoue, M. Ikebe. Characterization of the motor activity of mammalian myosin VIIA. J. Biol. Chem., 278 (2003), pp. 5478–5487Google Scholar
  47. I.P. Udovichenko, D. Gibbs, D.S. Williams. Actin-based motor properties of native myosin VIIa. J. Cell. Sci., 115 (2002), pp. 445–450Google Scholar
  48. A. Henn, E.M. De La Cruz. Vertebrate myosin VIIb is a high duty ratio motor adapted for generating and maintaining tension. J. Biol. Chem., 280 (2005), pp. 39665–39676Google Scholar
  49. Y. Yang, M. Kovacs, Q. Xu, J.B. Anderson, J.R. Sellers. Myosin VIIB from Drosophila is a high duty ratio motor. J. Biol. Chem., 280 (2005), pp. 32061–32068Google Scholar
  50. P.L. Post, M.J. Tyska, C.B. O’Connell, K. Johung, A. Hayward, M.S. Mooseker. Myosin-IXb is a single-headed and processive motor. J. Biol. Chem., 277 (2002), pp. 11679–11683Google Scholar
  51. A. Inoue, J. Saito, R. Ikebe, M. Ikebe. Myosin IXb is a single-headed minus-end-directed processive motor. Nat. Cell Biol., 4 (2002), pp. 302–306Google Scholar
  52. V. Nalavadi, M. Nyitrai, C. Bertolini, N. Adamek, M. Geeves, M. Bahler. Kinetic mechanism of myosin IXB and the contributions of two class lX specific regions. J Biol Chem. 2005 Nov 25;280(47):38957–68Google Scholar
  53. T. Kambara, M. Ikebe. A unique ATP hydrolysis mechanism of single-headed processive myosin, myosin IX. J Biol Chem. 2006 Feb 24;281(8):4949–57Google Scholar
  54. P.L. Post, G.M. Bokoch, M.S. Mooseker, Human myosin-IXb is a mechanochemically active motor and a GAP for rho, 111 (1998) 941–950Google Scholar
  55. M. Nishikawa, S. Nishikawa, A. Inoue, A.H. Iwane, T. Yanagida, M. Ikebe. A unique mechanism for the processive movement of single-headed myosin-IX. Biochem. Biophys. Res. Commun., 343 (2006), pp. 1159–1164Google Scholar
  56. C.B. O’Connell, M.S. Mooseker. Native myosin-IXb is a plus-, not a minus-end-directed motor. Nat. Cell Biol., 5 (2003), pp. 171–172Google Scholar
  57. M. Kovacs, F. Wang, J.R. Sellers. Mechanism of action of myosin X, a membrane-associated molecular motor. J. Biol. Chem., 280 (2005), pp. 15071–15083Google Scholar
  58. K. Homma, M. Ikebe. Myosin X is a high duty ratio motor. J. Biol. Chem., 280 (2005), pp. 29381–29391Google Scholar
  59. K. Homma, J. Saito, R. Ikebe, M. Ikebe. Motor function and regulation of myosin X. J. Biol. Chem., 276 (2001), pp. 34348–34354Google Scholar
  60. M. Tominaga, H. Kojima, E. Yokota, H. Orii, R. Nakamori, E. Katayama, M. Anson, T. Shimmen, K. Oiwa. Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J., 22 (2003), pp. 1263–1272Google Scholar
  61. A. Herm-Gotz, S. Weiss, R. Stratmann, S. Fujita-Becker, C. Ruff, E. Meyhofer, T. Soldati, D.J. Manstein, M.A. Geeves, D. Soldati. Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J., 21 (2002), pp. 2149–2158Google Scholar
  62. S.J. Kron, J.A. Spudich. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl. Acad. Sci. U. S. A., 83 (1986), pp. 6272–6276Google Scholar
  63. Qing Lu, Jianchao Li, and Mingjie Zhang. Cargo Recognition and Cargo-Mediated Regulation of Unconventional Myosins. Acc. Chem. Res., 2014, 47 (10), pp 3061–3070Google Scholar
  64. Hirano Y, Hatano T, Takahashi A, Toriyama M, Inagaki N, Hakoshima T. Structural basis of cargo recognition by the myosin‐X MyTH4–FERM domain. The EMBO Journal (2011) 30, 2734–2747Google Scholar
  65. Richards TA, Cavalier‐Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436: 1113–1118Google Scholar
  66. Yu C, Feng W, Wei Z, Miyanoiri Y, Wen W, Zhao Y, Zhang M (2009) Myosin VI undergoes cargo‐mediated dimerization. Cell 138: 537–548Google Scholar
  67. Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM (2004) A microtubule‐binding myosin required for nuclear anchoring and spindle assembly. Nature 431: 325–329Google Scholar
  68. Woolner S, O’Brien LL, Wiese C, Bement WM (2008) Myosin‐10 and actin filaments are essential for mitotic spindle function. J Cell Biol 182: 77–88Google Scholar
  69. Toyoshima F, Nishida E (2007) Integrin‐mediated adhesion orients the spindle parallel to the substratum in an EB1‐ and myosin X‐dependent manner. EMBO J 26: 1487–1498Google Scholar
  70. Hamada K, Shimizu T, Yonemura S, Tsukita S, Tsukita S, Hakoshima T (2003) Structural basis of adhesion‐molecule recognition by ERM proteins revealed by the crystal structure of the radixin‐ICAM‐2 complex. EMBO J 22: 502–514Google Scholar
  71. Takai Y, Kitano K, Terawaki S, Maesaki R, Hakoshima T (2007) Structural basis of PSGL‐1 binding to ERM proteins. Genes Cell 12: 1329–1338Google Scholar
  72. Takai Y, Kitano K, Terawaki S, Maesaki R, Hakoshima T (2008) Structural basis of the cytoplasmic tail of adhesion molecule CD43 and its binding to ERM proteins. J Mol Biol 381: 634–644Google Scholar
  73. Terawaki S, Kitano K, Hakoshima T (2007) Structural basis for type II membrane protein binding by ERM proteins revealed by the radixin‐neutral endopeptidase 24.11 (NEP) complex. J Biol Chem 282: 19854–19861Google Scholar
  74. Mori T, Kitano K, Fukami Y, Terawaki S, Hakoshima T (2008) Structural properties of the cytoplasmic tail of adhesion molecule CD44 and its binding to FERM proteins. J Biol Chem 283: 29602–29612Google Scholar
  75. Terawaki S, Maesaki R, Hakoshima T (2006) Structural basis of NHERF recognition by ERM proteins. Structure 14: 777–789Google Scholar
  76. Okada Y, Hirokawa N (2000) Mechanism of the single‐headed processivity: diffusional anchoring between the K‐loop of kinesin and the C terminus of tubulin. Proc Natl Acad Sci USA 97: 640–645Google Scholar
  77. Hirokawa N, Nitta R, Okada Y (2009) The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nat Rev Mol Cell Biol 10: 877–884Google Scholar
  78. Honnappa S, Okhrimenko O, Jaussi R, Jawhari H, Jelesarov I, Winkler FK, Steinmetz MO (2006) Key interaction modes of dynamic +TIP networks. Mol Cell 23: 663–671Google Scholar
  79. Mishima M, Maesaki R, Kasa M, Watanabe T, Fukata M, Kaibuchi K, Hakoshima T (2007) Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc Natl Acad Sci USA 104: 10346–10351Google Scholar
  80. Lodish H, Berk A, Zipursky SL, et al. Kinesin, Dynein, and Intracellular Transport. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000Google Scholar
  81. E. Lindahl. Unraveling the strokes of ion channel molecular machines in computers. Proc Natl Acad Sci U S A. 2012 Dec 26; 109(52): 21186–21187Google Scholar
  82. Borjesson SI, Elinder F. (2008). Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Cell Biochem Biophys 52:149–74Google Scholar
  83. Schoppa NE, et al. (1992) The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255:1712–1715.Google Scholar
  84. Zagotta WN, Hoshi T, Aldrich RW (1994) Shaker potassium channel gating III: Evaluation of kinetic models for activation. J Gen Physiol 103:321–62Google Scholar
  85. Keynes RD, Elinder F (1998) Modelling the activation, opening, inactivation and reopening of the voltage-gated sodium channel. Proc Biol Sci 265:263–70Google Scholar
  86. Long SB, et al. (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382Google Scholar
  87. Papazian DM, et al. (1995) Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14:1293–301Google Scholar
  88. DeCaen PG, et al. (2008) Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc Natl Acad Sci USA 105:15142–15147Google Scholar
  89. DeCaen PG, et al. (2009) Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc Natl Acad Sci USA 106:22498–22503Google Scholar
  90. Villalba-Galea CA, et al. (2008) S4-based voltage sensors have three major conformations. Proc Natl Acad Sci USA 105:17600–17607Google Scholar
  91. Murata Y, et al. (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243Google Scholar
  92. Sasaki M, Takagi M, Okamura Y (2006) A voltage sensor-domain protein is a voltage-gated proton channel. Science 312:589–592Google Scholar
  93. Ramsey IS, et al. (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–1216Google Scholar
  94. Schoppa NE, Sigworth FJ (1998) Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J Gen Physiol 111:313–342Google Scholar
  95. Larsson H, Elinder F (2000) A conserved glutamate is important for slow inactivation in K+ channels. Neuron 27:573–583Google Scholar
  96. Broomand A, Elinder F (2008) Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion. Neuron 59:770–777Google Scholar
  97. Webster SM, et al. (2004) Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges. Nature 428:864–868Google Scholar
  98. Campos FV, et al. (2007) Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc Natl Acad Sci USA 104:7904–7909Google Scholar
  99. Li M, et al. (2011) Gating the pore of P2X receptor channels. Nat Neurosci 11:883–887Google Scholar
  100. Lin MC, et al. (2011) R1 in the Shaker S4 occupies the gating charge transfer center in the resting state. J Gen Physiol 138:155–163Google Scholar
  101. Rulisek L, Vondrasek J (1998) Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J Inorg Biochem 71:115–127Google Scholar
  102. Ulrike Henriona, Jakob Renhorna, Sara I. Börjessona, Erin M. Nelsona, Christine S. Schwaigerb, Pär Bjelkmarb,c, Björn Wallnerd, Erik Lindahlb,c,1, and Fredrik Elindera. Tracking a complete voltage-sensor cycle with metal-ion bridges. Proc Natl Acad Sci USA. 2012;109(22):8552–8557Google Scholar
  103. Cole KS, Moore JW (1960) Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J 1:1–14Google Scholar
  104. Khalili-Araghi F, et al. (2012) Molecular Dynamics Investigation of the omega-Current in the Kv1.2 Voltage Sensor Domains. Biophys J 102:258–267Google Scholar
  105. Lucie Delemotte, Marina A. Kasimova, Michael L. Klein, Mounir Tarek, and Vincenzo Carnevale. 2015. Free-energy landscape of ion-channel voltage-sensor–domain activation. vol. 112, 124–129Google Scholar
  106. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Phys Rev Lett 100(2):020603Google Scholar
  107. Vidyaramanan Ganesan, Timothy Walsh, Kai-Ti Chang, and Marco Colombini. The Dynamics of Bax Channel Formation: Influence of Ionic Strength. Biophys J. 103, 2012, page: 483–491Google Scholar
  108. Unwin, P.N.T., and Ennis, P.D. 1984. Two configurations of a channel-forming membrane protein. Nature 307: 609–613Google Scholar
  109. Perozo, E., Cortes, D.M., and Cuello, L.G. 1999. Structural Rearrangements Underlying K+- Channel Activation Gating. Science 285: 73–78Google Scholar
  110. Perozo, E., Cortes, D.M., Sompornpisut, P., Kloda, A., and Martinac, B. 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942–948Google Scholar
  111. Toyoshima, C., and Mizutani, T. 2004. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430: 529–535Google Scholar
  112. Israelachvili, J.N. 1977. Refinement of the fluid-mosaic model of membrane structure. Biochim. Biophys. Acta 469: 221–225Google Scholar
  113. Sackmann, E. 1984. In Biological Membranes, edited by D. Chapman (London: Academic): 105Google Scholar
  114. Gruner, S.M. 1991. Lipid membrane curvature elasticity and protein function in Biologically Inspired Physics, edited by L. Peliti (New York: Plenum): 127–135Google Scholar
  115. Andersen, O.S., Sawyer, D.B., and Koeppe II, R.E. 1992. Biomembrane Structure and Function, edited by K. R. K. Easwaran and B. Gaber (Schenectady, New York: Adenine): 227–244Google Scholar
  116. Brown, M.F. 1994. Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73: 159–180Google Scholar
  117. Helfrich, W. 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28C: 693–703Google Scholar
  118. Ashrafuzzaman, Md.; Tuszynski, J. Regulation of Channel Function Due to Coupling with a Lipid Bilayer. Journal of Computational and Theoretical Nanoscience, Volume 9, Number 4, April 2012a, pp. 564–570Google Scholar
  119. Ashrafuzzaman, Md, Tuszynski, J. Membrane Biophysics. Springer-Verlag, 2012 (b). ISBN 978-3-642-16105-6Google Scholar
  120. Md. Ashrafuzzaman and J. A. Tuszynski. Ion pore formation in membranes due to complex interactions between lipids and antimicrobial peptides or biomolecules. Handbook of Nanoscience, Engineering, and Technology, Third Edition. Editors: William A Goddard III, Donald W. Brenner, Sergey E. Lyshevski, and Gerald J. Iafrate. CRC Press, 2012 (c); Pages 893–934Google Scholar
  121. Sahar Moradi-Monfareda, Vikram Krishnamurthya, Bruce Cornell. A molecular machine biosensor: Construction, predictive models and experimental studies. Biosensors and Bioelectronics. Volume 34, Issue 1, 15 April 2012, Pages 261–266Google Scholar
  122. Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; Jovanovich, S. B.; Krstic, P. S.; Lindsay, S.; Ling, X. S.; Mastrangelo, C. H.; Meller, A.; Oliver, J. S.; Pershin, Y. V.; Ramsey, J. M.; Riehn, R.; Soni, G. V.; Tabard-Cossa, V.; Wanunu, M.; Wiggin, M.; Schloss, J. A. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153Google Scholar
  123. Kocer, A.; Walko, M.; Meijberg, W.; Feringa, B. L.A Light-actuated Nanovalve Derived from a Channel Protein Science 2005, 309, 755–758Google Scholar
  124. Sukharev, S.; Anishkin, A. Mechanosensitive channels: what can we learn from ‘simple’ model systems? Trends Neurosci. 2004, 27, 345–351Google Scholar
  125. Louhivuori, M.; Risselada, H. J.; van der Giessen, E.; Marrink, S. J. Release of content through mechano-sensitive gates in pressurized liposomes Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 19856–19860Google Scholar
  126. Steinberg-Yfrach, G.; Rigaud, J.-L.; Durantini, E. N.; Moore, A. L.; Gust, D.; Moore, T. A. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane Nature 1998, 392, 479–482Google Scholar
  127. Banghart, M.; Borges, K.; Isacoff, E.; Trauner, D.; Kramer, R. H. Light-activated ion channels for remote control of neuronal firing Nat. Neurosci. 2004, 7, 1381–1386Google Scholar
  128. Volgraf, M.; Gorostiza, P.; Numano, R.; Kramer, R. H.; Isacoff, E. Y.; Trauner, D. Allosteric control of an ionotropic glutamate receptor with an optical switch Nat. Chem. Biol. 2006, 2, 47–52Google Scholar
  129. Stein, M.; Breit, A.; Fehrentz, T.; Gudermann, T.; Trauner, D. Optical Control of TRPV1 Channels Angew. Chem., Int. Ed. 2013, 52, 9845–9848Google Scholar
  130. Schoenberger, M.; Damijonaitis, A.; Zhang, Z. N.; Nagel, D.; Trauner, D. Development of a New Photochromic Ion Channel Blocker via Azologization of Fomocaine ACS Chem. Neurosci. 2014, 5, 514–518Google Scholar
  131. Schonberger, M.; Althaus, M.; Fronius, M.; Clauss, W.; Trauner, D. Controlling epithelial sodium channels with light using photoswitchable amilorides Nat. Chem. 2014, 6, 712–719Google Scholar
  132. Kramer, R. H.; Chambers, J. J.; Trauner, D. Photochemical tools for remote control of ion channels in excitable cells Nat. Chem. Biol. 2005, 1, 360–365Google Scholar
  133. Banghart, M. R.; Mourot, A.; Fortin, D. L.; Yao, J. Z.; Kramer, R. H.; Trauner, D. Photochromic Blockers of Voltage-Gated Potassium Channels Angew. Chem., Int. Ed. 2009, 48, 9097–9101Google Scholar
  134. Mourot, A.; Fehrentz, T.; Le Feuvre, Y.; Smith, C. M.; Herold, C.; Dalkara, D.; Nagy, F.; Trauner, D.; Kramer, R. H. Rapid optical control of nociception with an ion-channel photoswitch Nat. Methods 2012, 9, 396–402Google Scholar
  135. Szymanski, W.; Beierle, J. M.; Kistemaker, H. A.; Velema, W. A.; Feringa, B. L. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches Chem. Rev. 2013, 113, 6114–6178 1778Google Scholar
  136. Lougheed, T.; Borisenko, V.; Hennig, T.; Ruck-Braun, K.; Woolley, G. A. Photomodulation of ionic current through hemithioindigo-modified gramicidin channels Org. Biomol. Chem. 2004, 2, 2798–2801Google Scholar
  137. Banghart, M. R.; Volgraf, M.; Trauner, D. Engineering light-gated ion channels Biochemistry 2006, 45, 15129–15141Google Scholar
  138. Sundus Erbas-Cakmak, David A. Leigh, Charlie T. McTernan, and Alina L. Nussbaumer. Artificial Molecular Machines. Chem. Rev., 2015, 115 (18), pp 10081–10206Google Scholar
  139. Arseniev, A.S., Barsukov, I.L., Bystrov, V.F., and Ovchinnikov, Y.A. 1986. Biol. Membr. 3: 437–62Google Scholar
  140. Ketchem, R.R., Roux, B., and Cross, T.A. 1997. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5: 1655–69Google Scholar
  141. Townsley, L.E., Tucker, W.A., Sham, S., and Hinton, J.F. 2001. Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry 40: 11676–11686Google Scholar
  142. O’Connell, A.M., Koeppe II, R.E., and Andersen, O.S. 1990. Kinetics of gramicidin channel formation in lipid bilayers: trans-membrane monomer association. Science 250: 1256–1259Google Scholar
  143. Ashrafuzzaman M, Lampson MA, Greathouse DV, Koeppe II RE, Andersen OS. Manipulating lipid bilayer material properties using biologically active amphipathic molecules. J. Phys.: Condens. Matter 2006; 18: S1235–55Google Scholar
  144. Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J. Mem. Biol. 1974;19: 277–303Google Scholar
  145. He K, Ludtke SJ, Huang HW, Worcester DL. Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry. 1995;34: 15614–18Google Scholar
  146. Matsuzaki K, Murase O, Tokuda H, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996;35: 11361–68Google Scholar
  147. Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. Membrane pores induced by magainin. Biochemistry. 1996;35:13723–28Google Scholar
  148. Yang L, Harroun T, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 2001;81: 1475–85Google Scholar
  149. Sobko, A.A., Kotova, E.A., Antonenko, Y.N., Zakharov, S.D., and Cramer, W.A. 2006. Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore. The J. of Biol. Chem. 281: 14408–16Google Scholar
  150. Md Ashrafuzzaman, M Duszyk and J A Tuszynski. Chemotherapy Drugs Thiocolchicoside and Taxol Permeabilize Lipid Bilayer Membranes by Forming Ion Pores. Journal of Physics: Conference Series (2011) 012029Google Scholar
  151. Ashrafuzzaman, M., Tseng, C.-Y., Duszyk, M., Tuszynski, J. Chemotherapy Drugs Form Ion Pores in Membranes Due to Physical Interactions with Lipids. Chem. Biol. Drug Des., Volume 80, Issue 6, December 2012, Pages 992–1002Google Scholar
  152. L. J. Siskind, A. Davoody, N. Lewin, S. Marshall, and M. Colombini. Enlargement and Contracture of C2-Ceramide Channels. Biophysical Journal 85: 1560–1575 (2003)Google Scholar
  153. A. Anishkin, S. Sukharev, M. Colombini. Searching for the molecular arrangement of transmembrane ceramide channels. Biophys. J. 90: 2414–2426 (2006)Google Scholar
  154. S. Samanta, J. Stiban, T.K. Maugel, M. Colombini. Visualization of ceramide channels by transmission electron microscopy. Biochim. Biophys. Acta 1808: 1196–201 (2011)Google Scholar
  155. Abigail Clements, Dejan Bursac, Xenia Gatsos, Andrew J. Perry, Srgjan Civciristov, Nermin Celik, Vladimir A. Likic, Sebastian Poggio, Christine Jacobs-Wagner, Richard A. Strugnell, and Trevor Lithgow. The reducible complexity of a mitochondrial molecular machine. Proc Natl Acad Sci U S A. 2009 Sep 15; 106(37): 15791–15795Google Scholar
  156. Muller M, Martin W (1999) The genome of Rickettsia prowazekii and some thoughts on the origin of mitochondria and hydrogenosomes. Bioessays 21:377–381Google Scholar
  157. Emelyanov VV (2003) Mitochondrial connection to the origin of the eukaryotic cell. Eur J Biochem 270:1599–1618Google Scholar
  158. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481Google Scholar
  159. Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318Google Scholar
  160. Murcha MW, et al. (2007) Characterization of the preprotein and amino acid transporter gene family in Arabidopsis. Plant Physiol 143:199–212Google Scholar
  161. Pfanner N, Chacinska A (2002) The mitochondrial import machinery: preprotein-conducting channels with binding sites for presequences. Biochim Biophys Acta 1592:15–24Google Scholar
  162. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749Google Scholar
  163. van der Laan M, Rissler M, Rehling P (2006) Mitochondrial preprotein translocases as dynamic molecular machines. FEMS Yeast Res 6:849–861Google Scholar
  164. Bolender N, et al. (2008) Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep 9:42–49Google Scholar
  165. Mokranjac D, Neupert W (2008) Energetics of protein translocation into mitochondria. Biochim Biophys Acta 1777:758–762Google Scholar
  166. Jan Dudek, Peter Rehling, Martin van der Laan. Mitochondrial protein import: Common principles and physiological networks. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Volume 1833, Issue 2, February 2013, Pages 274–285Google Scholar
  167. N. Wiedemann, V. Kozjak, A. Chacinska, B. Schönfisch, S. Rospert, M.T. Ryan, N. Pfanner, C. Meisinger. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature, 424 (2003), pp. 565–571Google Scholar
  168. S. Kutik, D. Stojanovski, L. Becker, T. Becker, M. Meinecke, V. Krüger, C. Prinz, C. Meisinger, B. Guiard, R. Wagner, N. Pfanner, N. Wiedemann. Dissecting membrane insertion of mitochondrial β-barrel proteins. Cell, 132 (2008), pp. 1011–1024Google Scholar
  169. S.A. Paschen, T. Waizenegger, T. Stan, M. Preuss, M. Cyrklaff, K. Hell, D. Rapaport, W. Neupert. Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature, 426 (2003), pp. 862–866Google Scholar
  170. I. Gentle, K. Gabriel, P. Beech, R. Waller, T. Lithgow. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell Biol., 164 (2004), pp. 19–24Google Scholar
  171. C. Meisinger, M. Rissler, A. Chacinska, L.K. Sanjuan Szklarz, D. Milenkovic, V. Kozjak, B. Schönfisch, C. Lohaus, H.E. Meyer, M.P. Yaffe, B. Guiard, N. Wiedemann, N. Pfanner. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell, 7 (2004), pp. 61–71Google Scholar
  172. C. Meisinger, S. Pfannschmidt, M. Rissler, D. Milenkovic, T. Becker, D. Stojanovski, M.J. Youngman, R.E. Jensen, A. Chacinska, B. Guiard, N. Pfanner, N. Wiedemann. The morphology proteins Mdm12/Mmm1 function in the major β-barrel assembly pathway of mitochondria. EMBO J., 26 (2007), pp. 2229–2239Google Scholar
  173. M. van der Laan, M. Meinecke, J. Dudek, D.P. Hutu, M. Lind, I. Perschil, B. Guiard, R. Wagner, N. Pfanner, P. Rehling. Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nat. Cell Biol., 9 (2007), pp. 1152–1159Google Scholar
  174. K.N. Truscott, P. Kovermann, A. Geissler, A. Merlin, M. Meijer, A.J. Driessen, J. Rassow, N. Pfanner, R. Wagner. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat. Struct. Biol., 8 (2001), pp. 1074–1082Google Scholar
  175. M. Meinecke, R. Wagner, P. Kovermann, B. Guiard, D.U. Mick, D.P. Hutu, W. Voos, K.N. Truscott, A. Chacinska, N. Pfanner, P. Rehling. Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science, 312 (2006), pp. 1523–1526Google Scholar
  176. N.N. Alder, R.E. Jensen, A.E. Johnson. Fluorescence mapping of mitochondrial TIM23 complex reveals a water-facing, substrate-interacting helix surface. Cell, 134 (2008), pp. 439–450Google Scholar
  177. T. Komiya, S. Rospert, C. Koehler, R. Looser, G. Schatz, K. Mihara. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the ‘acid chain’ hypothesis. EMBO J., 17 (1998), pp. 3886–3898Google Scholar
  178. M.F. Bauer, C. Sirrenberg, W. Neupert, M. Brunner. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell, 87 (1996), pp. 33–41Google Scholar
  179. A. Chacinska, M. van der Laan, C.S. Mehnert, B. Guiard, D.U. Mick, D.P. Hutu, K.N. Truscott, N. Wiedemann, C. Meisinger, N. Pfanner, P. Rehling. Distinct forms of mitochondrial TOM–TIM supercomplexes define signal-dependent states of preprotein sorting. Mol. Cell. Biol., 30 (2010), pp. 307–318Google Scholar
  180. A. Chacinska, M. Lind, A.E. Frazier, J. Dudek, C. Meisinger, A. Geissler, A. Sickmann, H.E. Meyer, K.N. Truscott, B. Guiard, N. Pfanner, P. Rehling. Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell, 120 (2005), pp. 817–829Google Scholar
  181. S. Meier, W. Neupert, J.M. Herrmann. Conserved N-terminal negative charges in the Tim17 subunit of the TIM23 translocase play a critical role in the import of preproteins into mitochondria. J. Biol. Chem., 280 (2005), pp. 7777–7785Google Scholar
  182. S. Martinez-Caballero, S.M. Grigoriev, J.M. Herrmann, M.L. Campo, K.W. Kinnally. Tim17p regulates the twin pore structure and voltage gating of the mitochondrial protein import complex TIM23. J. Biol. Chem., 282 (2007), pp. 3584–3593Google Scholar
  183. Jingjing Sun, Ziqing Deng, Aixin Yan. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, Volume 453, Issue 2, 17 October 2014, Pages 254–267Google Scholar
  184. K. Poole. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med., 39 (2007), pp. 162–176Google Scholar
  185. L.J. Piddock. Multidrug-resistance efflux pumps? Not just for resistance. Nat. Rev. Microbiol., 4 (2006), pp. 629–636Google Scholar
  186. M. Putman, H.W. van Veen, W.N. Konings. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev., 64 (2000), pp. 672–693Google Scholar
  187. J. Handzlik, A. Matys, K. Kieć-Kononowicz. Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics, 2 (2013), pp. 28–45Google Scholar
  188. X.-Z. Li, H. Nikaido. Efflux-mediated drug resistance in bacteria. Drugs, 64 (2004), pp. 159–204Google Scholar
  189. L.J. Piddock. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev., 19 (2006), pp. 382–402Google Scholar
  190. S. Murakami, R. Nakashima, E. Yamashita, T. Matsumoto, A. Yamaguchi. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature, 443 (2006), pp. 173–179Google Scholar
  191. Dijun Du, Zhao Wang, Nathan R. James, Jarrod E. Voss, Ewa Klimont, Thelma Ohene-Agyei, Henrietta Venter, Wah Chiu, and Ben F. Luisi. Structure of the AcrAB-TolC multidrug efflux pump. Nature. 2014 May 22; 509(7501): 512–515Google Scholar
  192. Du, D., Venter, H., Pos, K. M. & Luisi, B. F. in Microbial Efflux Pumps: Current Research Ch. 3 (Caister Academic, 2013)Google Scholar
  193. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. F. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000)Google Scholar
  194. Murakami, S., Nakashima, R. & Yamashita, E. Cry & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002)Google Scholar
  195. Mikolosko, J., Bobyk, K., Zgurskaya, H. I. & Ghosh, P. Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14, 577–587 (2006)Google Scholar
  196. Seeger, M. A. et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006)Google Scholar
  197. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179 (2006)Google Scholar
  198. Eicher, T. et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc. Natl Acad. Sci. USA 109, 5687–5692 (2012)Google Scholar
  199. Hobbs, E. C., Yin, X., Paul, B. J., Astarita, J. L. & Storz, G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc. Natl Acad. Sci. USA 109, 16696–16701 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations