Cell Surface Diffusion and Adsorption

  • Mohammad Ashrafuzzaman


Diffusion of adsorbates on cell surface is an important natural process. Once materials reach at the surface of the cell, they fall on a dynamic two-dimensional (2D) plane. The dynamical nature of the constituents of the plane has been explained in detail from a mainly thermodynamic point of view in Chap.  2. The underlying mechanisms of the cell surface diffusion appear with various types of explanations. Biochemical and biological analyses of surface assay experiments provide observation-based explanations on the surface diffusion mechanisms. General physics rules on diffusion and adsorption have been tried to explain the cell surface diffusion and adsorption mechanisms theoretically. Most of the explanations appear with no conclusive and universal models that may explain the general surface diffusion of adsorbates and various other natural materials on and across the quite dynamic plane of the surface of the biological cell. In this chapter, we shall try to address this crucial issue considering some of our self-developed strategies as well as available information from various important studies.


  1. G. A. Duncan, D. H. Fairbrother, and M. A. Bevan. Diffusing colloidal probes of cell surfaces. Soft Matter, 2016,12, 4731–4738.Google Scholar
  2. A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson. Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials 8, 543–557 (2009).Google Scholar
  3. E. C. Wang and A. Z. Wang. Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb). 2014 Jan; 6(1): 9–26.Google Scholar
  4. E. C. Cho, Q. Zhang, and Y. Xia. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 2011 Apr 24; 6(6): 385–391.Google Scholar
  5. B. Halamoda-Kenzaoui, M. Ceridono, P. Colpo, A. Valsesia, P. Urbán, I. Ojea-Jiménez, S. Gioria, D. Gilliland, F. Rossi, A. K. Ovaskainen. 2015. Dispersion Behaviour of Silica Nanoparticles in Biological Media and Its Influence on Cellular Uptake. PLoS ONE 10(10): e0141593.Google Scholar
  6. D A Berk, A Clark, Jr, and R M Hochmuth. Analysis of lateral diffusion from a spherical cell surface to a tubular projection. Biophys J. 1992 Jan; 61(1): 1–8.Google Scholar
  7. S. Zhang, H. Gao, and G. Bao. Physical Principles of Nanoparticle Cellular Endocytosis. ACS Nano, 2015, 9 (9), pp 8655–8671.Google Scholar
  8. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science, 2004, 303: 1818–1822.Google Scholar
  9. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1: 325–327.Google Scholar
  10. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA, 2005, 102: 9469–9474.Google Scholar
  11. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Delivery Rev, 2008, 60: 1307–1315.Google Scholar
  12. Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci, 2006, 51: 427–556.Google Scholar
  13. Shubayev VI, Pisanic II TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Delivery Rev, 2009, 61: 467–477.Google Scholar
  14. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol, 2007, 2: 249–255.Google Scholar
  15. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 2004, 11: 169–183.Google Scholar
  16. Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, Zafari M, Akbari HR, Rad HG. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine, 2011, 6: 1117–1127.Google Scholar
  17. Curtis J, Greenberg M, Kester J, Phillips S, Krieger G. Nano-technology and nanotoxicology. Toxicol Rev, 2006, 25: 245–260.Google Scholar
  18. Yue T, Zhang X. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets. Phys Rev E, 2012, 85: 011917.Google Scholar
  19. Ashrafuzzaman, M., 2015a. Diffusion across cell phase states. Biomedical Sci. Today. 1:e4.Google Scholar
  20. Ashrafuzzaman, M., 2015b. Phenomenology and energetics of diffusion across cell phase states. Saudi J. of Biol. Sci., 22: 666–673.Google Scholar
  21. Lapotko DO, Lukianova-Hleb EY, Oraevsky AA. Clusterization of nanoparticles during their interaction with living cells. Nanomedicine, 2007, 2: 241–253.Google Scholar
  22. Ginzburg VV, Balijepalli S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett, 2007, 7: 3716–3722.Google Scholar
  23. Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol, 2010, 5: 579–583.Google Scholar
  24. Lu F, Wu SH, Hung Y, Mou CY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small, 2009, 5: 1408–1413.Google Scholar
  25. Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm, 2002, 233: 51–59.Google Scholar
  26. Qhobosheane M, Santra S, Zhang P, Tan W. Biochemically functionalized silica nanoparticles. Analyst, 2001, 126: 1274–1278.Google Scholar
  27. Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano, 2008, 2: 1639–1644.Google Scholar
  28. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small, 2007, 3: 1941–1949.Google Scholar
  29. Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt RH, Kane AB, Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA, 2013, 110: 12295–12300.Google Scholar
  30. J.-P. Chapel and J.-F. Ersatile. electrostatic assembly of nanoparticles and polyelectrolytes: Coating, clustering and layer – by-layer processes, Berret, Curr. Opin. Colloid Interface Sci., 2012,17, 268.Google Scholar
  31. Gindy ME, Prud’homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv. 2009;6(8):865–878.Google Scholar
  32. Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol. 2010;188(6):759–768.Google Scholar
  33. Sarabjeet Singh Suri, Hicham Fenniri, and Baljit Singh, Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology, 2007, 2:16.Google Scholar
  34. P. Couvreur, G. Barratt, E. Fattal, P. Legrand, C. Vauthier, Nanocapsule technology: a review, Crit. Rev. Ther. Drug Carrier Syst., 19 (2002), pp. 99–134.Google Scholar
  35. Rajesh Singh, James W. Lillard Jr., Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009 June; 86(3):215–223.Google Scholar
  36. A. Satoh, Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann and Dissipative Particle Dynamics, Elsevier, Amsterdam, 2011.Google Scholar
  37. Alder, B. J.; T. E. Wainwright (1959). “Studies in Molecular Dynamics. I. General Method”. J. Chem. Phys. 31 (2): 459.Google Scholar
  38. M. Nedyalkova, S. Madurga, S. Pisov, I. Pastor, E. Vilaseca and F. Mas, J. Chem. Phys., 2012, 137.Google Scholar
  39. Stoll, S. (2014). Computer Simulations of Soft Nanoparticles and Their Interactions with DNA-Like Polyelectrolytes.Google Scholar
  40. Ashrafuzzaman, M., and J. Tuszynski. 2012a. Membrane Biophysics, Springer, Heidelberg, Germany.Google Scholar
  41. Ashrafuzzaman, M., and J. A. Tuszynski. 2012b. Regulation of channel function due to coupling with a lipid bilayer, J. Comput. Theor. Nanosci. 9: 564–570.Google Scholar
  42. Ashrafuzzaman, M. C.-Y. Tseng, and J.A. Tuszynski. 2014. Regulation of channel function due to physical energetic coupling with a lipid bilayer. Biochemical and Biophysical Research Communications. 445:463–468.Google Scholar
  43. D A Mannock, R N Lewis, R N McElhaney, M Akiyama, H Yamada, D C Turner, and S M Gruner. Effect of the chirality of the glycerol backbone on the bilayer and nonbilayer phase transitions in the diastereomers of di-dodecyl-beta-D-glucopyranosyl glycerol. Biophys J. 1992 Nov; 63(5): 1355–1368.Google Scholar
  44. D. A. Mannock, R. N. McElhaney, P. E. Harper, and S. M. Gruner. Differential scanning calorimetry and X-ray diffraction studies of the thermotropic phase behavior of the diastereomeric di-tetradecyl-beta-D-galactosyl glycerols and their mixture. Biophys J. 1994 Mar; 66(3 Pt 1): 734–740.Google Scholar
  45. Ashrafuzzaman M., Beck H. (2004a) in Vortex dynamics in two-dimensional Josephson junction arrays, (University of Neuchatel,, ch 5, p 85.
  46. M Ashrafuzzaman, H Beck. (2004b). Vortex dynamics in dilute two-dimensional Josephson junction arrays. Journal of magnetism and magnetic materials 272, 284–285.Google Scholar
  47. Nadia Ruthardt, Don C Lamb and Christoph Bräuchle. Single-particle Tracking as a Quantitative Microscopy-based Approach to Unravel Cell Entry Mechanisms of Viruses and Pharmaceutical Nanoparticles. Molecular Therapy (2011) 19 7, 1199–1211.Google Scholar
  48. Andrew I. Shevchuk, Phil Hobson, Max J. Lab, David Klenerman, Nina Krauzewicz, Yuri E. Korchev. Imaging Single Virus Particles on the Surface of Cell Membranes by High-Resolution Scanning Surface Confocal Microscopy. Biophysical Journal, Volume 94, Issue 10, 15 May 2008, Pages 4089–4094.Google Scholar
  49. Gerard D. Byrne, Driton Vllasaliu, Franco H. Falcone, Michael G. Somekh, and Snjezana Stolnik. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy. Mol. Pharmaceutics 2015, 12, 3862–3870.Google Scholar
  50. Nuri Oh and Ji-Ho Park. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014; 9(Suppl 1): 51–63.Google Scholar
  51. Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol. 2001; 3:473–483.Google Scholar
  52. Lakadamyali M, Rust MJ, Babcock HP, and Zhuang X. Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA. 2003;100:9280–9285.Google Scholar
  53. Rust MJ, Lakadamyali M, Zhang F, and Zhuang X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 2004;11:567–573.Google Scholar
  54. Ewers H, Smith AE, Sbalzarini IF, Lilie H, Koumoutsakos P, and Helenius A. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci USA. 2005;102:15110–15115. [PMC free article] [PubMed].Google Scholar
  55. Payne CK. Imaging gene delivery with fluorescence microscopy. Nanomedicine (Lond) 2007;2:847–860. [PubMed].Google Scholar
  56. Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, and Hogle JM. Imaging poliovirus entry in live cells. PLoS Biol. 2007;5:e183. [PMC free article] [PubMed].Google Scholar
  57. Watson P, Jones AT, and Stephens DJ. Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev. 2005;57:43–61.Google Scholar
  58. Rémy-Kristensen A, Clamme JP, Vuilleumier C, Kuhry JG, and Mély Y. Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim Biophys Acta. 2001;1514:21–32.Google Scholar
  59. Kopatz I, Remy JS, and Behr JP. A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med. 2004;6:769–776. [PubMed].Google Scholar
  60. Rejman J, Bragonzi A, and Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther. 2005;12:468–474. [PubMed].Google Scholar
  61. Rinne J, Albarran B, Jylhävä J, Ihalainen TO, Kankaanpää P, Hytönen VP. et al. (2007 Internalization of novel non-viral vector TAT-streptavidin into human cells BMC Biotechnol 71.Google Scholar
  62. Lundin P, Johansson H, Guterstam P, Holm T, Hansen M, Langel U. et al. (2008) Distinct uptake routes of cell-penetrating peptide conjugates Bioconjug Chem 192535–2542.2542 [PubMed].Google Scholar
  63. Mäe M, Andaloussi SE, Lehto T, and Langel U. Chemically modified cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv. 2009;6:1195–1205. [PubMed].Google Scholar
  64. Helenius A, Kartenbeck J, Simons K, and Fries E. On the entry of Semliki forest virus into BHK-21 cells. J Cell Biol. 1980;84:404–420.Google Scholar
  65. Marsh M, and Bron R. SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface. J Cell Sci. 1997;110 (Pt 1):95–103.Google Scholar
  66. Döhner K, and Sodeik B. The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol. 2005;285:67–108.Google Scholar
  67. von Gersdorff K, Sanders NN, Vandenbroucke R, De Smedt SC, Wagner E, and Ogris M. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther. 2006;14:745–753.Google Scholar
  68. Marsh M, and Helenius A. Virus entry: open sesame. Cell. 2006;124:729–740.Google Scholar
  69. Godinez WJ, Lampe M, Wörz S, Müller B, Eils R, and Rohr K. Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences. Med Image Anal. 2009;13:325–342.Google Scholar
  70. Sbalzarini IF, and Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol. 2005;151:182–195.Google Scholar
  71. Saxton MJ, and Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399.Google Scholar
  72. Karla de Bruin, Nadia Ruthardt, Katharina von Gersdorff, Ralf Bausinger, Ernst Wagner, Manfred Ogris, and Christoph Bräuchle. Cellular Dynamics of EGF Receptor–Targeted Synthetic Viruses. Molecular Therapy (2007) 15 7, 1297–1305.Google Scholar
  73. Bausinger R, von Gersdorff K, Braeckmans K, Ogris M, Wagner E, Bräuchle C. et al. (2006 The transport of nanosized gene carriers unraveled by live-cell imaging Angew Chem Int Ed Engl 451568–1572.1572.Google Scholar
  74. Sauer AM, de Bruin KG, Ruthardt N, Mykhaylyk O, Plank C, andBräuchle C. Dynamics of magnetic lipoplexes studied by single particle tracking in living cells. J Control Release. 2009;137:136–145.Google Scholar
  75. Urs F. Greber. Virus and Host Mechanics Support Membrane Penetration and Cell Entry. J. Virol. April 2016 vol. 90 no. 8 3802–3805.Google Scholar
  76. Mercer J, Schelhaas M, Helenius A. 2010. Virus entry by endocytosis. Annu Rev Biochem 79:803–833. CrossRefMedlineGoogle Scholar.
  77. Suomalainen M, Greber UF. 2013. Uncoating of non-enveloped viruses. Curr Opin Virol 3:27–33. CrossRefMedlineGoogle Scholar.
  78. Yamauchi Y, Greber UF. 15 February 2016, posting date. Principles of virus uncoating: cues and the snooker ball. Traffic
  79. Bao G, Suresh S. 2003. Cell and molecular mechanics of biological materials. Nat Mater 2:715–725.
  80. Stefania Luisoni, Maarit Suomalainen, Karin Boucke, Lukas B. Tanner, Markus R. Wenk, Xue Li Guan, Michał Grzybek, Ünal Coskun, Urs F. Greber. Co-option of Membrane Wounding Enables Virus Penetration into Cells. Cell Host & Microbe, Volume 18, Issue 1, 8 July 2015, Pages 75–85.Google Scholar
  81. M. Luo. Influenza Virus Entry. In Viral Molecular Machines, Advances in Experimental Medicine and Biology 726 (Editors: Michael G. Rossmann and Venigalla B. Rao). Springer Science+Business Media (, 2012. Page 201–223.
  82. Bottcher C, Ludwig K, Herrmann A, van Heel M, Stark H (1999) Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy. FEBS Lett 463:255–259 Link:
  83. Peter Järver, Ülo Langel. (2006) Cell-penetrating peptides—A brief introduction. Biochimica et Biophysica Acta (BBA) – Biomembranes. Volume 1758, Issue 3, March 2006, Pages 260–263.Google Scholar
  84. M. Lindgren, M. Hallbrink, A. Prochiantz, Ü. Langel. Cell-penetrating peptides. Trends Pharmacol. Sci., 21 (2000), pp. 99–103.Google Scholar
  85. Lin Guo and Feng Gai. Heterogeneous Diffusion of a Membrane-Bound pHLIP Peptide. Biophys J. 2010 Jun 16; 98(12): 2914–2922.Google Scholar
  86. Liebman P.A., Pugh E.N. The control of phosphodiesterase in rod disk membranes: kinetics, possible mechanisms, and significance for vision. Vision Res. 1979;19:375–380. [PubMed].Google Scholar
  87. Pastan I.H., Willingham M.C. Journey to the center of the cell: role of the receptosome. Science. 1981;214:504–509. [PubMed].Google Scholar
  88. Hackenbrock C.R. Lateral diffusion and electron transfer in the mitochondrial inner membrane. Trends Biochem. Sci. 1981;6:151–154.Google Scholar
  89. Koppel D.E. Measurement of membrane protein lateral mobility. In: Hesketh T.R., Kornberg H.L., Metcalfe J.C., Northcote D.H., Pogson C.I., Tipton K.F., editors. Techniques in the Life Sciences, B4/II. Lipid and Membrane Biochemistry. Elsevier Biomedical Press; County Clare, Ireland: 1982.Google Scholar
  90. Gross D., Webb W.W. Molecular counting of low-density lipoprotein particles as individuals and small clusters on cell surfaces. Biophys. J. 1986;49:901–911. [PMC free article] [PubMed].Google Scholar
  91. Peters R. Lateral mobility of proteins and lipids in the red cell membrane and the activation of adenylate cyclase by β-adrenergic receptors. FEBS Lett. 1988;234:1–7. [PubMed].Google Scholar
  92. Popot J.-L., Engelman D.M. Helical membrane protein folding, stability, and evolution. Annu. Rev. Biochem. 2000;69:881–922.Google Scholar
  93. Popot J-L, Engelman DM. Membrane protein folding and oligomerization: the two-stage model. 1990. Biochemistry 29:4031–37.Google Scholar
  94. B. J. Bormann and D. M. Engelman. INTRAMEMBRANE HELIX-HELIX ASSOCIATION IN OLIGOMERIZATION AND TRANSMEMBRANE SIGNALING. Annu. Rev. Biophys. Biomol. Slruel. 1992.21:223–42.Google Scholar
  95. Magde D., Elson E.L., Webb W.W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 1974;13:29–61. [PubMed].Google Scholar
  96. Haustein E., Schwille P. Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 2007;36:151–169. [PubMed].Google Scholar
  97. Burns A.R., Frankel D.J., Buranda T. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy. Biophys. J. 2005;89:1081–1093. [PMC free article] [PubMed].Google Scholar
  98. Zhang L., Granick S. Slaved diffusion in phospholipid bilayers. Proc. Natl. Acad. Sci. USA. 2005;102:9118–9121. [PMC free article] [PubMed].Google Scholar
  99. Guo L., Chowdhury P., Gai F. Heterogeneous and anomalous diffusion inside lipid tubules. J. Phys. Chem. B. 2007;111:14244–14249.Google Scholar
  100. Tjernberg L.O., Pramanik A., Rigler R. Amyloid β-peptide polymerization studied using fluorescence correlation spectroscopy. Chem. Biol. 1999;6:53–62. [PubMed].Google Scholar
  101. Sengupta P., Garai K., Maiti S. The amyloid β peptide (Aβ1–40) is thermodynamically soluble at physiological concentrations. Biochemistry. 2003;42:10506–10513.Google Scholar
  102. Junghyun Jo, Soomin Hong, Won Yun Choi & Dong Ryul Lee. Cell-penetrating peptide (CPP)-conjugated proteins is an efficient tool for manipulation of human mesenchymal stromal cells. Scientific Reports 4, Article number: 4378 (2014).Google Scholar
  103. M. Green, P.M. Loewenstein. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 55 (1988), pp. 1179–1188.Google Scholar
  104. D. Derossi, A.H. Joliot, G. Chassaing, A. Prochiantz. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 269 (1994), pp. 10444–10450.Google Scholar
  105. Chérine Bechara, Sandrine Sagan. Cell-penetrating peptides: 20 years later, where do we stand? FEBS, Volume 587, Issue 12, 19 June 2013, Pages 1693–1702.Google Scholar
  106. E. Vives, P. Brodin, B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem., 272 (1997), pp. 16010–16017.Google Scholar
  107. A. Elmquist, M. Lindgren, T. Bartfai, U. Langel. VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp. Cell Res., 269 (2001), pp. 237–244.Google Scholar
  108. M. Pooga, M. Hallbrink, M. Zorko, U. Langel. Cell penetration by transportan. FASEB J., 12 (1998), pp. 67–77.Google Scholar
  109. M.C. Morris, P. Vidal, L. Chaloin, F. Heitz, G. Divita. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res., 25 (1997), pp. 2730–2736.Google Scholar
  110. M.C. Morris, J. Depollier, J. Mery, F. Heitz, G. Divita. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol., 19 (2001), pp. 1173–1176.Google Scholar
  111. D.J. Mitchell, D.T. Kim, L. Steinman, C.G. Fathman, J.B. Rothbard. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res., 56 (2000), pp. 318–325.Google Scholar
  112. S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, Y. Sugiura. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem., 276 (2001), pp. 5836–5840.Google Scholar
  113. J. Oehlke, A. Scheller, B. Wiesner, E. Krause, M. Beyermann, E. Klauschenz, M. Melzig, M. Bienert. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim. Biophys. Acta, 1414 (1998), pp. 127–139.Google Scholar
  114. D. Delaroche, et al.. Tracking a new cell-penetrating (W/R) nonapeptide, through an enzyme-stable mass spectrometry reporter tag. Anal. Chem., 79 (2007), pp. 1932–1938.Google Scholar
  115. A. Ziegler. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv. Drug Deliv. Rev., 60 (2008), pp. 580–597.Google Scholar
  116. F. Madani, S. Lindberg, U. Langel, S. Futaki, A. Graslund. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys., 2011 (2011), p. 414729.Google Scholar
  117. F. Milletti. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today, 17 (2012), pp. 850–860.Google Scholar
  118. P.E. Thorén, D. Persson, P. Isakson, M. Goksor, A. Onfelt, B. Norden. Uptake of analogs of penetratin, Tat(48–60) and oligoarginine in live cells. Biochem. Biophys. Res. Commun., 307 (2003), pp. 100–107.Google Scholar
  119. Ü. Langel. Cell-Penetrating Peptides: Processes and Applications. CRC Press, Boca Raton, FL (2002).Google Scholar
  120. D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, A. Prochiantz. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem., 271 (1996), pp. 18188–18193.Google Scholar
  121. C.Y. Jiao, D. Delaroche, F. Burlina, I.D. Alves, G. Chassaing, S. Sagan. Translocation and endocytosis for cell-penetrating peptide internalization. J. Biol. Chem., 284 (2009), pp. 33957–33965.Google Scholar
  122. P. Saalik, A. Niinep, J. Pae, M. Hansen, D. Lubenets, U. Langel, M. Pooga. Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. J. Control Release, 153 (2011), pp. 117–125.Google Scholar
  123. P.E. Thoren, D. Persson, E.K. Esbjorner, M. Goksor, P. Lincoln, B. Norden. Membrane binding and translocation of cell-penetrating peptides. Biochemistry, 43 (2004), pp. 3471–3489.Google Scholar
  124. H. Binder, G. Lindblom. Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys. J., 85 (2003), pp. 982–995.Google Scholar
  125. A. Elmquist, U. Langel. In vitro uptake and stability study of pVEC and its all-D analog Biol. Chem., 384 (2003), pp. 387–393.Google Scholar
  126. J.L. Zaro, W.C. Shen. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochem. Biophys. Res. Commun., 307 (2003), pp. 241–247.Google Scholar
  127. J.L. Zaro, W.C. Shen. Evidence that membrane transduction of oligoarginine does not require vesicle formation. Exp. Cell Res., 307 (2005), pp. 164–173.Google Scholar
  128. E. Vives, J.P. Richard, C. Rispal, B. Lebleu. TAT peptide internalization: seeking the mechanism of entry. Curr. Protein Pept. Sci., 4 (2003), pp. 125–132.Google Scholar
  129. S. Console, C. Marty, C. Garcia-Echeverria, R. Schwendener, K. Ballmer-Hofer. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem., 278 (2003), pp. 35109–35114.Google Scholar
  130. J.P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M.J. Gait, L.V. Chernomordik, B. Lebleu. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem., 278 (2003), pp. 585–590.Google Scholar
  131. A. Fittipaldi, A. Ferrari, M. Zoppe, C. Arcangeli, V. Pellegrini, F. Beltram, M. Giacca. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem., 278 (2003), pp. 34141–34149.Google Scholar
  132. R. Fischer, T. Waizenegger, K. Kohler, R. Brock. A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import. Biochim. Biophys. Acta, 1564 (2002), pp. 365–374.Google Scholar
  133. S.T. Henriques, J. Costa, M.A. Castanho. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry, 44 (2005), pp. 10189–10198.Google Scholar
  134. S. Deshayes, A. Heitz, M.C. Morris, P. Charnet, G. Divita, F. Heitz. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Biochemistry, 43 (2004), pp. 1449–1457.Google Scholar
  135. M. Silhol, M. Tyagi, M. Giacca, B. Lebleu, E. Vives. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur. J. Biochem., 269 (2002), pp. 494–501.Google Scholar
  136. Hiroshi Nikaido. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. December 2003 vol. 67 no. 4 593–656.Google Scholar
  137. Plesiat, P., and H. Nikaido. 1992. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol. Microbiol. 6:1323–1333.Google Scholar
  138. IAN CHOPRA and PETER BALL. Transport of Antibiotics into Bacteria. Adv Microb Physiol. 1982;23:183–240.Google Scholar
  139. Stefania Galdiero, Annarita Falanga, Marco Cantisani, Rossella Tarallo, Maria Elena Della Pepa, Virginia D’Oriano, and Massimiliano Galdiero. Curr Protein Pept Sci. 2012 Dec; 13(8): 843–854.Google Scholar
  140. Nakae, T. 1976. Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channels. J. Biol. Chem. 251:2176–2178.Google Scholar
  141. Nikaido, H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388.Google Scholar
  142. Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178:5853–5859.Google Scholar
  143. Bertrand Cinquin, Laure Maigre, Elizabeth Pinet, Jacqueline Chevalier, Robert A. Stavenger, Scott Mills, Matthieu Réfrégiers & Jean-Marie Pagès. Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level. Scientific Reports 5, Article number: 17968 (2015).Google Scholar
  144. Jamme F, Villette S, Giuliani A, Rouam V, Wien F, Lagarde B, Réfrégiers M. Synchrotron UV fluorescence microscopy uncovers new probes in cells and tissues. Microsc. Microanal. 16, 507–14 (2010).Google Scholar
  145. Jamme F, Kascakova S, Villette S, Allouche F, Pallu S, Rouam V, Réfrégiers M. Deep UV autofluorescence microscopy for cell biology and tissue histology. Biol. Cell 105, 277–88 (2013).Google Scholar
  146. L Trón, J Szöllósi, S Damjanovich, S H Helliwell, D J Arndt-Jovin, and T M Jovin. Flow cytometric measurement of fluorescence resonance energy transfer on cell surface. Quantitative Evaluation of the Transfer Efficiency on a Cell-by-Cell Basis. Biophys. J. 45, 939–46 (1984).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations