Better Runtime Guarantees via Stochastic Domination

  • Benjamin Doerr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10782)


Apart from few exceptions, the mathematical runtime analysis of evolutionary algorithms is mostly concerned with expected runtimes. In this work, we argue that stochastic domination is a notion that should be used more frequently in this area. Stochastic domination allows to formulate much more informative performance guarantees than the expectation alone, it allows to decouple the algorithm analysis into the true algorithmic part of detecting a domination statement and probability theoretic part of deriving the desired probabilistic guarantees from this statement, and it allows simpler and more natural proofs.

As particular results, we prove a fitness level theorem which shows that the runtime is dominated by a sum of independent geometric random variables, we prove tail bounds for several classic problems, and we give a short and natural proof for Witt’s result that the runtime of any \((\mu ,p)\) mutation-based algorithm on any function with unique optimum is subdominated by the runtime of a variant of the \((1 + 1)\) EA on the OneMax function.


  1. 1.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed budget results from expected optimisation times. In: Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 1581–1588. ACM (2013)Google Scholar
  4. 4.
    Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010). Scholar
  5. 5.
    Jansen, T., Zarges, C.: Performance analysis of randomised search heuristics operating with a fixed budget. Theoret. Comput. Sci. 545, 39–58 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Borisovsky, P.A., Eremeev, A.V.: Comparing evolutionary algorithms to the (1+1)-EA. Theoret. Comput. Sci. 403, 33–41 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhou, D., Luo, D., Lu, R., Han, Z.: The use of tail inequalities on the probable computational time of randomized search heuristics. Theoret. Comput. Sci. 436, 106–117 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Witt, C.: Fitness levels with tail bounds for the analysis of randomized search heuristics. Inf. Process. Lett. 114, 38–41 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Doerr, B., Doerr, C.: A tight runtime analysis of the (1+(\(\lambda \), \(\lambda \))) genetic algorithm on OneMax. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 1423–1430. ACM (2015)Google Scholar
  10. 10.
    Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Hoboken (2002)zbMATHGoogle Scholar
  11. 11.
    Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation. Theoret. Comput. Sci. 425, 17–33 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Doerr, B.: Analyzing randomized search heuristics: tools from probability theory. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 1–20. World Scientific, Singapore (2011)zbMATHGoogle Scholar
  13. 13.
    Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer, Heidelberg (2001). Scholar
  14. 14.
    Janson, S.: Tail bounds for sums of geometric and exponential variables. arXiv e-prints arXiv:1709.08157 (2017)
  15. 15.
    Scheideler, C.: Probabilistic methods for coordination problems. University of Paderborn, Habilitation thesis (2000).
  16. 16.
    Doerr, B., Happ, E., Klein, C.: Tight analysis of the (1+1)-EA for the single source shortest path problem. Evol. Comput. 19, 673–691 (2011)CrossRefGoogle Scholar
  17. 17.
    Doerr, B., Doerr, C.: The impact of random initialization on the runtime of randomized search heuristics. Algorithmica 75, 529–553 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+\(\lambda \)) evolutionary algorithm–different asymptotic runtimes for different instances. Theoret. Comput. Sci. 561, 3–23 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. J. Math. Model. Algorithms 3, 349–366 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)CrossRefGoogle Scholar
  22. 22.
    Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algorithm. J. Discrete Algorithms 4, 181–199 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation - combining exploration and exploitation. In: Congress on Evolutionary Computation, CEC 2009, pp. 1455–1462. IEEE (2009)Google Scholar
  24. 24.
    Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 892–901. Springer, Cham (2014). Scholar
  25. 25.
    Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+\(\lambda \)) evolutionary algorithm with self-adjusting mutation rate. In: Genetic and Evolutionary Computation Conference, GECCO 2017. ACM (2017)Google Scholar
  26. 26.
    Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k outperforms standard bit mutation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 824–834. Springer, Cham (2016). Scholar
  27. 27.
    Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 1123–1130. ACM (2016)Google Scholar
  28. 28.
    Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of generalised selection hyper-heuristics for pseudo-boolean optimisation. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 849–856. ACM (2017)Google Scholar
  29. 29.
    Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2017. ACM (2017)Google Scholar
  30. 30.
    Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    de Perthuis de Laillevault, A., Doerr, B., Doerr, C.: Money for nothing: speeding up evolutionary algorithms through better initialization. In: Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 815–822. ACM (2015)Google Scholar
  32. 32.
    Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Droste, S., Jansen, T., Wegener, I.: A natural and simple function which is hard for all evolutionary algorithms. In: IEEE International Conference on Industrial Electronics, Control, and Instrumentation, IECON 2000, pp. 2704–2709. IEEE (2000)Google Scholar
  34. 34.
    Jansen, T., Wegener, I.: Evolutionary algorithms - how to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Trans. Evol. Comput. 5, 589–599 (2001)CrossRefGoogle Scholar
  35. 35.
    Wegener, I., Witt, C.: On the optimization of monotone polynomials by simple randomized search heuristics. Comb. Probab. Comput. 14, 225–247 (2005)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1)-EA for finding approximate solutions to vertex cover problems. IEEE Trans. Evol. Comput. 13, 1006–1029 (2009)CrossRefGoogle Scholar
  37. 37.
    He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127, 51–81 (2001)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evol. Comput. 7, 173–203 (1999)CrossRefGoogle Scholar
  39. 39.
    Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoret. Comput. Sci. 378, 32–40 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Benjamin Doerr
    • 1
  1. 1.Ecole PolytechniquePalaiseauFrance

Personalised recommendations