Skip to main content

Neural Network Models of Conditionals

  • Chapter
  • First Online:

Part of the book series: Springer Undergraduate Texts in Philosophy ((SUTP))

Abstract

This chapter explains how artificial neural networks may be used as models for reasoning, conditionals, and conditional logic. It starts with the historical overlap between neural network research and logic, it discusses connectionism as a paradigm in cognitive science that opposes the traditional paradigm of symbolic computationalism, it mentions some recent accounts of how logic and neural networks may be combined, and it ends with a couple of open questions concerning the future of this area of research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This article is a revised and extended version of: Leitgeb [41]. Some material contained in Leitgeb [37, 38], Ortner and Leitgeb [46], and in the popular and non-technical exposition of logic and neural networks in Leitgeb [39] was used, too.

    We are grateful for generous support received from the Alexander von Humboldt Foundation.

  2. 2.

    Rumelhart et al. [51] is still something like the “bible” of connectionism; Rojas [50] is a nice introduction to neural networks, and at 〈http://plato.stanford.edu/entries/connectionism/〉 the entry on connectionism in the Stanford Encyclopedia of Philosophy can be found – have a look at these for more background information.

  3. 3.

    See Brewka et al. [11] for a very nice overview of nonmonotonic reasoning, Makinson [44] for a comprehensive logical treatment of the subject, and Schurz and Leitgeb [53] for a compendium of articles on cognitive aspects of nonmonotonic reasoning. Ginsberg [24] is an outdated collection of articles but it is still very useful if one wants to see what nonmonotonic reasoning derives from.

  4. 4.

    Brewka et al. [11] includes a very clear and accessible introduction to logic programming.

  5. 5.

    Almost all of the classical approaches to nonmonotonic reasoning from the 1980s, such as default logic, inheritance networks, truth maintenance systems, circumscription, and autoepistemic logic belong to this class of nonmonotonic reasoning mechanisms.

  6. 6.

    For more on the differences between the two sides of nonmonotonic reasoning, see Brewka et al. [11].

  7. 7.

    We should add that there are also results concerning the description of neural network states and processes by means of classical logic, over and above the traditional McCulloch and Pitts approach: see Pinkas [48] and Bechtel [5] for examples.

  8. 8.

    See van Benthem [58] for a nice discussion of this relationship between conditionals and quantifiers; more can be found by consulting the theory of generalized quantifiers – see e.g. Peters and Westerstahl [47].

  9. 9.

    The following famous example is due to Ernest Adams.

  10. 10.

    For a textbook-like overview of the philosophical literature on indicative and subjunctive conditionals, see Bennett [7].

  11. 11.

    Such networks are called ‘inhibition networks’ in Leitgeb [35].

  12. 12.

    A partial order \(\leqslant \) (on S) is a reflexive, antisymmetric, and transitive binary relation, i.e.: for all s ∈ S: \(s \leqslant s\); for all s, s ∈ S: if \(s \leqslant s^{\prime }\) and \(s^{\prime } \leqslant s\) then s = s ; for all s 1, s 2, s 3 ∈ S: if \(s_1 \leqslant s_2\) and \(s_2 \leqslant s_3\) then \(s_1 \leqslant s_3\).

  13. 13.

    So 1 here is actually the constant 1-function, i.e., the function that maps each node to the activation value 1.

  14. 14.

    \(\lambda u^{\prime }.\left \langle W(u^{\prime },u),o_{u^{\prime }}(t)\right \rangle \) is the function that maps u to the pair \(\left \langle W(u^{\prime },u),o_{u^{\prime }}(t)\right \rangle \).

  15. 15.

    Gärdenfors [22] is the classic reference, and Hansson [25] is a nice textbook on belief revision.

References

  1. Adams, E. (1975). The logic of conditionals: An application of probability to deductive logic (Synthese library, Vol. 86). Dordrecht: Reidel.

    Book  Google Scholar 

  2. Adams, E. (1998). A primer of probability logic (CSLI lecture notes). Stanford: Center for the study of language and information.

    Google Scholar 

  3. Bader, S., & Hitzler, P. (2005). Dimensions of neural-symbolic integration – a structured survey. In S. N. Artemov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb, & J. Woods (Eds.), We will show them! Essays in honour of Dov Gabbay (Federation for computational logic, pp. 167–194). London: College Publications, Int.

    Google Scholar 

  4. Balkenius, C., & Gärdenfors, P. (1991). Nonmonotonic inferences in neural networks. In J. A. Allen, R. Fikes, & E. Sandewall (Eds.), Principles of knowledge representation and reasoning (pp. 32–9). San Mateo: Morgan Kaufmann.

    Google Scholar 

  5. Bechtel, W. (1994). Natural deduction in connectionist systems. Synthese, 101(3), 433–463.

    Article  Google Scholar 

  6. Bechtel, W. (1996). What should a connectionist philosophy of science look like? In R. M. McCauley (Ed.), The Churchlands and their critics (pp. 121–44). Massachusetts: Basil Blackwell.

    Google Scholar 

  7. Bennett, J. (2003). A philosophical guide to conditionals. Oxford: Clarendon Press.

    Book  Google Scholar 

  8. Bird, A. (2002). What is in a paradigm? Richmond Journal of Philosophy, 1(ii), 11–20.

    Google Scholar 

  9. Blutner, R. (2004). Nonmonotonic inferences and neural networks. Synthese, 142, 143–74.

    Article  Google Scholar 

  10. Boutsinas, B., & Vrahatis, M. N. (2001). Artificial nonmonotonic neural networks. Artificial Intelligence, 132, 1–38.

    Article  Google Scholar 

  11. Brewka, G., Dix, J., & Konolige, K. (1997). Nonmonotonic reasoning. An overview (CSLI lecture notes, Vol. 73). Stanford: CSLI Publications.

    Google Scholar 

  12. Chalmers, D. J. (1990). Syntactic transformations on distributed representations. Connection Science, 2(1 & 2), 53–62.

    Article  Google Scholar 

  13. Chen, C. -H., & Honavar, V. (1999). A neural-network architecture for syntax analysis. IEEE Transactions on Neural Networks, 10(1), 94–114.

    Article  Google Scholar 

  14. Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. London: MIT Press.

    Google Scholar 

  15. d’Avila Garcez, A. S., Broda, K., & Gabbay D. M. (2001). Symbolic knowledge extraction from trained neural networks: A sound approach. Artificial Intelligence, 125, 153–205.

    Google Scholar 

  16. d’Avila Garcez, A. S., Broda, K. B., & Gabbay D. M. (2002). Neural-symbolic learning systems. London: Springer.

    Book  Google Scholar 

  17. d’Avila Garcez, A. S., Lamb, L. C., & Gabbay, D. M. (2009). Neural-symbolic cognitive reasoning. Berlin: Springer.

    Google Scholar 

  18. d’Avila Garcez, A. S., Besold, T. R., de Raedt, L., Földiak, P., Hitzler, P., Icard, T., Kühnberger, K. -U., Lamb, L. C., Miikkulainen, R., & Silver, D. L. (2015). Neural-symbolic learning and reasoning: Contributions and challenges. Paper presented at the 2015 AAAI spring symposium series, Stanford.

    Google Scholar 

  19. Dietz, E. -A., Hölldobler, S., Palacios, L. (2015). A connectionist network for skeptical abduction. Paper presented at NeSy 2015, Buenos Aires.

    Google Scholar 

  20. Flach, P. A. (2000). Logical characterizations of inductive learning. In D. M. Gabbay & R. Kruse (Eds.), Handbook of defeasible reasoning and uncertainty management systems (Vol. 4, pp. 155–96). Dordrecht: Kluwer.

    Google Scholar 

  21. Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71.

    Article  Google Scholar 

  22. Gärdenfors, P. (1988). Knowledge in flux. Cambridge, MA: The MIT Press.

    Google Scholar 

  23. Gärdenfors, P. (1994). How logic emerges from the dynamics of information. In J. Van Eijck & A. Visser (Eds.), Logic and information flow (pp. 49–77). Cambridge: The MIT Press.

    Google Scholar 

  24. Ginsberg, M. L. (Ed.). (1987). Readings in nonmonotonic reasoning (pp. 1–23). Los Altos: Morgan Kaufmann.

    Google Scholar 

  25. Hansson, S. O. (1999). A textbook of belief dynamics. Dordrecht: Kluwer.

    Book  Google Scholar 

  26. Hitzler, P., Hölldobler, S., & Seda, A. K. (2004). Logic programs and connectionist networks. Journal of Applied Logic, 2(3), 245–272.

    Article  Google Scholar 

  27. Hölldobler, S. (1993). Automated inferencing and connectionist models (Post-doctoral thesis).

    Google Scholar 

  28. Hölldobler, S., & Kalinke, Y. (1994). Towards a massively parallel computational model for logic programming. In Proceedings ECAI94 Workshop on Combining Symbolic and Connectionist Processing (pp. 68–77). ECCAI.

    Google Scholar 

  29. Hölldobler, S. (2009). Cognitive science, computational logic and connectionism. In M. Adriani, et al. (Eds.), Proceedings of the International Conference on Advanced Computer Science and Information Systems (ICACSIS) (pp. 1–6).

    Google Scholar 

  30. Horgan, T., & Tienson, J. (1996). Connectionism and the philosophy of psychology. Cambridge: The MIT Press.

    Google Scholar 

  31. Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 3–42). Princeton: Princeton University Press.

    Google Scholar 

  32. Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44, 167–207.

    Article  Google Scholar 

  33. Legendre, G., Miyata, Y., & Smolensky, P. (1994). Principles for an integrated connectionist/symbolic theory of higher cognition. Hillsdale: L. Erlbaum.

    Google Scholar 

  34. Lehmann, D., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55, 1–60.

    Article  Google Scholar 

  35. Leitgeb, H. (2001). Nonmonotonic reasoning by inhibition nets. Artificial Intelligence, 128(1–2), 161–201.

    Article  Google Scholar 

  36. Leitgeb, H. (2003). Nonmonotonic reasoning by inhibition nets II. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(suppl., issue 2), 105–35.

    Article  Google Scholar 

  37. Leitgeb, H. (2004). Inference on the low level. An investigation into deduction, nonmonotonic reasoning, and the philosophy of cognition (Applied logic series). Dordrecht: Kluwer/Springer.

    Google Scholar 

  38. Leitgeb, H. (2005). Interpreted dynamical systems and qualitative laws: From inhibition networks to evolutionary systems. Synthese, 146, 189–202.

    Article  Google Scholar 

  39. Leitgeb, H. (2005). Reseaux de neurones capables de raisonner. Dossier Pour la Science (Special issue of the French edition of the Scientific American) October/December, 97–101.

    Google Scholar 

  40. Leitgeb, H. (2007). Beliefs in conditionals vs. conditional beliefs. Topoi, 26(1), 115–32.

    Article  Google Scholar 

  41. Leitgeb, H. (2007) Neural network models of conditionals: An introduction. In X. Arrazola, J. M. Larrazabal, et al. (Eds.), LogKCA-07, Proceedings of the First ILCLI International Workshop on Logic and Philosophy of Knowledge, Communication and Action (pp. 191–223). Bilbao: University of the Basque Country Press.

    Google Scholar 

  42. Levesque, H. (1990). All I know: A study in autoepistemic logic. Artificial Intelligence, 42, 263–309.

    Article  Google Scholar 

  43. Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.

    Google Scholar 

  44. Makinson, D. (1994). General patterns in nonmonotonic reasoning. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming (Vol. 3, pp. 35–110.). Oxford: Clarendon Press.

    Google Scholar 

  45. McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–33; Reprinted in: W. S. McCulloch, Embodiments of mind. Cambridge, MA: The MIT Press (1965).

    Google Scholar 

  46. Ortner, R., & H. Leitgeb (2011). Mechanizing induction. In D. Gabbay, S. Hartmann, & J. Woods (Eds.), Handbook of the history of logic. Volume 10: Inductive logic (pp. 719–772). Oxford: Elsevier.

    Google Scholar 

  47. Peters, S., & Westerstahl, D. (2006). Quantifiers in language and logic. Oxford: Oxford University Press.

    Google Scholar 

  48. Pinkas, G. (1991). Symmetric neural networks and logic satisfiability. Neural Computation, 3, 282–291.

    Article  Google Scholar 

  49. Pinkas, G. (1995). Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artificial Intelligence, 77, 203–247.

    Article  Google Scholar 

  50. Rojas, R. (1996). Neural networks – a systematic introduction. Berlin: Springer.

    Google Scholar 

  51. Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (1986). Parallel distributed processing (Vols. 1 and 2). Cambridge: The MIT Press.

    Google Scholar 

  52. Schurz, G. (2002). Ceteris paribus laws: Classification and deconstruction. Erkenntnis, 57(3), 351–72.

    Article  Google Scholar 

  53. Schurz, G., & Leitgeb, H. (Eds.). (2005). Special volume on “Non-monotonic and uncertain reasoning in the focus of paradigms of cognition. Synthese, 146, 1–2.

    Google Scholar 

  54. Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11, 1–23.

    Article  Google Scholar 

  55. Smolensky, P. (1990). Tensor-product variable binding and the representation of symbolic structures in connectionist networks. Artificial Intelligence, 46, 159–216.

    Article  Google Scholar 

  56. Smolensky, P., & Legendre, G. (2006). The harmonic mind: From neural computation to optimality-theoretic grammar. Cambridge, MA: The MIT Press.

    Google Scholar 

  57. Stenning, K., & Lambalgen, M. van (2008). Human reasoning and cognitive science. Cambridge: The MIT Press.

    Google Scholar 

  58. van Benthem, J. (1984). Foundations of conditional logic. Journal of Philosophical Logic, 13(3), 303–49.

    Article  Google Scholar 

  59. Van Gelder, T. J. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21, 615–65.

    Google Scholar 

  60. Van Gelder, T. J. (1999). Distributed versus local representation. In R. Wilson & F. Keil (Eds.), The MIT encyclopedia of cognitive sciences (pp. 236–38). Cambridge: The MIT Press.

    Google Scholar 

  61. Wheeler, G. (2017). Machine epistemology and big data. In L. McIntyre & A. Rosenberg (Eds.), The Routledge companion to philosophy of social science (pp. 321–329). New York: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Leitgeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leitgeb, H. (2018). Neural Network Models of Conditionals. In: Hansson, S., Hendricks, V. (eds) Introduction to Formal Philosophy. Springer Undergraduate Texts in Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-77434-3_7

Download citation

Publish with us

Policies and ethics