Advertisement

A Polynomial Sized Kernel for Tracking Paths Problem

  • Aritra Banik
  • Pratibha Choudhary
  • Daniel Lokshtanov
  • Venkatesh Raman
  • Saket Saurabh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10807)

Abstract

Consider a secure environment (say an airport) that has a unique entry and exit point with multiple inter-crossing paths between them. We want to place (minimum number of) trackers (or check points) at some specific intersections so that based on the sequence of trackers a person has encountered, we can identify the exact path traversed by the person. Motivated by such applications, we study the Tracking Paths problem in this paper. Given an undirected graph with a source s, a destination t and a non-negative integer k, the goal is to find a set of at most k vertices, a tracking set, that intersects each \(s\)-\(t\) path in a unique sequence. Such a set enables a central controller to track all the paths from s to t. We first show that the problem is NP-complete. Then we show that finding a tracking set of size at most k is fixed-parameter tractable (FPT) when parameterized by the solution size. More specifically, given an undirected graph on n vertices and an integer k, we give a polynomial time algorithm that either determines that the graph cannot be tracked by k trackers or produces an equivalent instance of size \(\mathcal {O}(k^7)\).

References

  1. 1.
    Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discret. Math. 12(3), 289–297 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Banik, A., Katz, M.J., Packer, E., Simakov, M.: Tracking paths. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 67–79. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57586-5_7 CrossRefGoogle Scholar
  3. 3.
    Bhatti, S., Xu, J.: Survey of target tracking protocols using wireless sensor network. In: 2009 Fifth International Conference on Wireless and Mobile Communications, pp. 110–115 (2009)Google Scholar
  4. 4.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, 1st edn. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21275-3 CrossRefzbMATHGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999).  https://doi.org/10.1007/978-1-4612-0515-9 CrossRefzbMATHGoogle Scholar
  6. 6.
    Gupta, R., Das, S.R.: Tracking moving targets in a smart sensor network. In: IEEE 58th Vehicular Technology Conference, vol. 5, pp. 3035–3039 (2003)Google Scholar
  7. 7.
    Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin 2(191–195), 1 (1976)zbMATHGoogle Scholar
  8. 8.
    Hernando, C., Mora, M., Pelayo, I.M., Seara, C., Wood, D.R.: Extremal graph theory for metric dimension and diameter. Electron. J. Comb. 17(1), R30 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series. Springer, Boston (1972).  https://doi.org/10.1007/978-1-4684-2001-2_9 Google Scholar
  10. 10.
    Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic time. J. Comb. Theory Ser. B 102(2), 424–435 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl. Math. 70(3), 217–229 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network-based defense mechanisms countering the DoS and DDoS problems. ACM Comput. Surv. 39(1), Article No. 3 (2007)Google Scholar
  14. 14.
    Slater, P.J.: Leaves of trees. Congr. Numer 14(549–559), 37 (1975)zbMATHGoogle Scholar
  15. 15.
    Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Kent, S.T., Strayer, W.T.: Hash-based IP traceback. SIGCOMM Comput. Commun. Rev. 31(4), 3–14 (2001)CrossRefGoogle Scholar
  16. 16.
    Thomassé, S.: A \(4k^2\) kernel for feedback vertex set. ACM Trans. Algorithms (TALG) 6(2), 32 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology JodhpurJodhpurIndia
  2. 2.University of BergenBergenNorway
  3. 3.The Institute of Mathematical Sciences, HBNIChennaiIndia
  4. 4.UMI ReLaXChennaiIndia

Personalised recommendations