Advertisement

On the Complexity of Finding Internally Vertex-Disjoint Long Directed Paths

  • Júlio Araújo
  • Victor A. Campos
  • Ana Karolinna Maia
  • Ignasi Sau
  • Ana Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10807)

Abstract

For two positive integers k and \(\ell \), a \((k \times \ell )\) -spindle is the union of k pairwise internally vertex-disjoint directed paths with \(\ell \) arcs each between two vertices u and v. We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contains a subdivision of a spindle, which generalize both the Maximum Flow and Longest Path problems. We obtain the following complexity dichotomy: for a fixed \(\ell \ge 1\), finding the largest k such that an input digraph G contains a subdivision of a \((k \times \ell )\)-spindle is polynomial-time solvable if \(\ell \le 3\), and NP-hard otherwise. We place special emphasis on finding spindles with exactly two paths and present FPT algorithms that are asymptotically optimal under the ETH. These algorithms are based on the technique of representative families in matroids, and use also color-coding as a subroutine. Finally, we study the case where the input graph is acyclic, and present several algorithmic and hardness results.

Keywords

Digraph subdivision Spindle Parameterized complexity FPT algorithm Representative family Complexity dichotomy 

References

  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Araújo, J., Campos, V.A., Maia, A.K., Sau, I., Silva, A.: On the complexity of finding internally vertex-disjoint long directed paths. CoRR, abs/1706.09066 (2017)Google Scholar
  3. 3.
    Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, London (2008).  https://doi.org/10.1007/978-1-84800-998-1 MATHGoogle Scholar
  4. 4.
    Bang-Jensen, J., Havet, F., Maia, A.K.: Finding a subdivision of a digraph. Theoret. Comput. Sci. 562, 283–303 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Benhocine, A., Wojda, A.P.: On the existence of specified cycles in a tournament. J. Graph Theory 7(4), 469–473 (1983)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brewster, R.C., Hell, P., Pantel, S.H., Rizzi, R., Yeo, A.: Packing paths in digraphs. J. Graph Theory 44(2), 81–94 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cohen, N., Havet, F., Lochet, W., Nisse, N.: Subdivisions of oriented cycles in digraphs with large chromatic number. CoRR, abs/1605.07762 (2016)Google Scholar
  8. 8.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21275-3 CrossRefMATHGoogle Scholar
  9. 9.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-662-53622-3 MATHGoogle Scholar
  10. 10.
    Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)MATHGoogle Scholar
  12. 12.
    Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pp. 479–488 (2011)Google Scholar
  13. 13.
    Havet, F., Maia, A.K., Mohar, B.: Finding a subdivision of a prescribed digraph of order 4. J. Graph Theory (to appear).  https://doi.org/10.1002/jgt.22174
  14. 14.
    Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths with length constraints. Networks 12(3), 277–286 (1982)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kim, R., Kim, S.-J., Ma, J., Park, B.: Cycles with two blocks in \(k\)-chromatic digraphs. CoRR, abs/1610.05839 (2016)Google Scholar
  16. 16.
    Kriesell, M.: Disjoint \(A\)-paths in digraphs. J. Comb. Theory Ser. B 95(1), 168–172 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Metzlar, A.: Disjoint paths in acyclic digraphs. J. Comb. Theory Ser. B 57(2), 228–238 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Monien, B.: How to find long paths efficiently. Ann. Discret. Math. 25, 239–254 (1985)MathSciNetMATHGoogle Scholar
  19. 19.
    Schrijver, A.: A short proof of Mader’s \(\cal{S}\)-paths theorem. J. Comb. Theory Ser. B 82(2), 319–321 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)Google Scholar
  21. 21.
    Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based approach. J. Comput. Syst. Sci. 82(3), 488–502 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Zehavi, M.: A randomized algorithm for long directed cycle. Inf. Process. Lett. 116(6), 419–422 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Júlio Araújo
    • 1
  • Victor A. Campos
    • 2
  • Ana Karolinna Maia
    • 2
  • Ignasi Sau
    • 1
    • 3
  • Ana Silva
    • 1
  1. 1.ParGO Research Group, Departamento de MatemáticaUniversidade Federal do CearáFortalezaBrazil
  2. 2.ParGO Research Group, Departamento de ComputaçãoUniversidade Federal do CearáFortalezaBrazil
  3. 3.CNRS, Université de Montpellier, LIRMMMontpellierFrance

Personalised recommendations