Advertisement

A Framework for Algorithm Stability and Its Application to Kinetic Euclidean MSTs

  • Wouter Meulemans
  • Bettina Speckmann
  • Kevin Verbeek
  • Jules Wulms
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10807)

Abstract

We say that an algorithm is stable if small changes in the input result in small changes in the output. This kind of algorithm stability is particularly relevant when analyzing and visualizing time-varying data. Stability in general plays an important role in a wide variety of areas, such as numerical analysis, machine learning, and topology, but is poorly understood in the context of (combinatorial) algorithms.

In this paper we present a framework for analyzing the stability of algorithms. We focus in particular on the tradeoff between the stability of an algorithm and the quality of the solution it computes. Our framework allows for three types of stability analysis with increasing degrees of complexity: event stability, topological stability, and Lipschitz stability. We demonstrate the use of our stability framework by applying it to kinetic Euclidean minimum spanning trees.

References

  1. 1.
    Aichholzer, O., Aurenhammer, F., Hurtado, F.: Sequences of spanning trees and a fixed tree theorem. Comput. Geom. Theory Appl. 21(1–2), 3–20 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, 2nd edn. Springer, Heidelberg (2006).  https://doi.org/10.1007/b139028 zbMATHGoogle Scholar
  3. 3.
    Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algorithms 31(1), 1–28 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Been, K., Nöllenburg, M., Poon, S.-H., Wolff, A.: Optimizing active ranges for consistent dynamic map labeling. Comput. Geom. Theory Appl. 43(3), 312–328 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2, 499–526 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P., Kobourov, S.G., Lubiw, A., Mitchell, J.S.: On simultaneous planar graph embeddings. Comput. Geom. Theory Appl. 36(2), 117–130 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: Proceedings of 21st Symposium on Computational Geometry, pp. 263–271 (2005)Google Scholar
  8. 8.
    de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic 2-centers in the black-box model. In: Proceedings of 29th Symposium on Computational Geometry, pp. 145–154 (2013)Google Scholar
  9. 9.
    Durocher, S., Kirkpatrick, D.: The Steiner centre of a set of points: stability, eccentricity, and applications to mobile facility location. Int. J. Comput. Geom. Appl. 16(04), 345–371 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Durocher, S., Kirkpatrick, D.: Bounded-velocity approximation of mobile Euclidean 2-centres. Int. J. Comput. Geom. Appl. 18(03), 161–183 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Erickson, J.: Dense point sets have sparse Delaunay triangulations or “... but not too nasty”. Discret. Comput. Geom. 33(1), 83–115 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goddard, W., Swart, H.C.: Distances between graphs under edge operations. Discret. Math. 161(1–3), 121–132 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guibas, L.J.: Kinetic data structures. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applications, pp. 23.1–23.18. Chapman and Hall/CRC, Boca Raton (2004)Google Scholar
  14. 14.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Katoh, N., Tokuyama, T., Iwano, K.: On minimum and maximum spanning trees of linearly moving points. In: Proceedings of 33rd Symposium on Foundations of Computer Science, pp. 396–405 (1992)Google Scholar
  16. 16.
    Kitchin, R.M.: Cognitive maps: what are they and why study them? J. Environ. Psychol. 14(1), 1–19 (1994)CrossRefGoogle Scholar
  17. 17.
    Markoff, W.: Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen. Math. Ann. 77(2), 213–258 (1916)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discret. Comput. Geom. 8(3), 265–293 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations