Skip to main content

A Framework for Algorithm Stability and Its Application to Kinetic Euclidean MSTs

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

Abstract

We say that an algorithm is stable if small changes in the input result in small changes in the output. This kind of algorithm stability is particularly relevant when analyzing and visualizing time-varying data. Stability in general plays an important role in a wide variety of areas, such as numerical analysis, machine learning, and topology, but is poorly understood in the context of (combinatorial) algorithms.

In this paper we present a framework for analyzing the stability of algorithms. We focus in particular on the tradeoff between the stability of an algorithm and the quality of the solution it computes. Our framework allows for three types of stability analysis with increasing degrees of complexity: event stability, topological stability, and Lipschitz stability. We demonstrate the use of our stability framework by applying it to kinetic Euclidean minimum spanning trees.

W. Meulemans and J. Wulms are (partially) supported by the Netherlands eScience Center (NLeSC) under grant number 027.015.G02. B. Speckmann and K. Verbeek are supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 639.023.208 and no. 639.021.541, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aichholzer, O., Aurenhammer, F., Hurtado, F.: Sequences of spanning trees and a fixed tree theorem. Comput. Geom. Theory Appl. 21(1–2), 3–20 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, 2nd edn. Springer, Heidelberg (2006). https://doi.org/10.1007/b139028

    MATH  Google Scholar 

  3. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algorithms 31(1), 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Been, K., Nöllenburg, M., Poon, S.-H., Wolff, A.: Optimizing active ranges for consistent dynamic map labeling. Comput. Geom. Theory Appl. 43(3), 312–328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2, 499–526 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P., Kobourov, S.G., Lubiw, A., Mitchell, J.S.: On simultaneous planar graph embeddings. Comput. Geom. Theory Appl. 36(2), 117–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: Proceedings of 21st Symposium on Computational Geometry, pp. 263–271 (2005)

    Google Scholar 

  8. de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic 2-centers in the black-box model. In: Proceedings of 29th Symposium on Computational Geometry, pp. 145–154 (2013)

    Google Scholar 

  9. Durocher, S., Kirkpatrick, D.: The Steiner centre of a set of points: stability, eccentricity, and applications to mobile facility location. Int. J. Comput. Geom. Appl. 16(04), 345–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durocher, S., Kirkpatrick, D.: Bounded-velocity approximation of mobile Euclidean 2-centres. Int. J. Comput. Geom. Appl. 18(03), 161–183 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erickson, J.: Dense point sets have sparse Delaunay triangulations or “... but not too nasty”. Discret. Comput. Geom. 33(1), 83–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goddard, W., Swart, H.C.: Distances between graphs under edge operations. Discret. Math. 161(1–3), 121–132 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guibas, L.J.: Kinetic data structures. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applications, pp. 23.1–23.18. Chapman and Hall/CRC, Boca Raton (2004)

    Google Scholar 

  14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  15. Katoh, N., Tokuyama, T., Iwano, K.: On minimum and maximum spanning trees of linearly moving points. In: Proceedings of 33rd Symposium on Foundations of Computer Science, pp. 396–405 (1992)

    Google Scholar 

  16. Kitchin, R.M.: Cognitive maps: what are they and why study them? J. Environ. Psychol. 14(1), 1–19 (1994)

    Article  Google Scholar 

  17. Markoff, W.: Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen. Math. Ann. 77(2), 213–258 (1916)

    Article  MathSciNet  Google Scholar 

  18. Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discret. Comput. Geom. 8(3), 265–293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Wulms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meulemans, W., Speckmann, B., Verbeek, K., Wulms, J. (2018). A Framework for Algorithm Stability and Its Application to Kinetic Euclidean MSTs. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics