Plane Gossip: Approximating Rumor Spread in Planar Graphs

  • Jennifer Iglesias
  • Rajmohan Rajaraman
  • R. Ravi
  • Ravi Sundaram
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10807)


We study the design of schedules for multi-commodity multicast. In this problem, we are given an undirected graph G and a collection of source-destination pairs, and the goal is to schedule a minimum-length sequence of matchings that connects every source with its respective destination. The primary communication constraint of the multi-commodity multicast model is the number of connections that a given node can make, not link bandwidth. Multi-commodity multicast and its special cases, (single-commodity) broadcast and multicast, are all NP-complete. Multi-commodity multicast is closely related to the problem of finding a subgraph of optimal poise, where the poise is defined as the sum of the maximum degree and the maximum distance between any source-destination pair. We show that for any instance of the multicast problem, the minimum poise subgraph can be approximated to within a factor of \(O(\log k)\) with respect to the value of a natural LP relaxation in a graph with k source-destination pairs. This is the first upper bound on the integrality gap of the natural LP; all previous algorithms yielded approximations with respect to the integer optimum. Using this integrality gap upper bound and shortest-path separators in planar graphs, we obtain our main result: an \(O(\log ^3 k \frac{\log n}{\log \log n})\)-approximation for multi-commodity multicast for planar graphs which improves on the \(2^{\widetilde{O}(\sqrt{\log n})}\)-approximation for general graphs.

We also study the minimum-time radio gossip problem in planar graphs where a message from each node must be transmitted to all other nodes under a model where nodes can broadcast to all neighbors and only nodes with a single broadcasting neighbor get a non-interfered message. In earlier work Iglesias et al. (FSTTCS 2015), we showed a strong \(\varOmega (n^{\frac{1}{2} - \epsilon })\)-hardness of approximation for computing a minimum gossip schedule in general graphs. Using our techniques for the telephone model, we give an \(O(\log ^2 n)\)-approximation for radio gossip in planar graphs breaking this barrier. Moreover, this is the first bound for radio gossip given that doesn’t rely on the maximum degree of the graph.


  1. 1.
    Abraham, I., Gavoille, C.: Object location using path separators. In: PODC, pp. 188–197 (2006)Google Scholar
  2. 2.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J. Comput. Syst. Sci. 43, 290–298 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baker, B., Shostak, R.: Gossips and telephones. Discret. Math. 2(3), 191–193 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Message multicasting in heterogeneous networks. SIAM J. Comput. 30(2), 347–358 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cherkassky, B.: Mnogopolyusnye dvukhproduktovye zadachi [Russian: Multiterminal two commodity problems]. Issledovaniya po Diskretnoi Optimizatsii [Russian: Studies in discrete optimization], pp. 261–289 (1976)Google Scholar
  6. 6.
    Elkin, M., Kortsarz, G.: A combinatorial logarithmic approximation algorithm for the directed telephone broadcast problem. SIAM J. Comput. 35(3), 672–689 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Elkin, M., Kortsarz, G.: Polylogarithmic additive inapproximability of the radio broadcast problem. SIAM J. Discret. Math. 19(4), 881–899 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Elkin, M., Kortsarz, G.: An approximation algorithm for the directed telephone multicast problem. Algorithmica 45(4), 569–583 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast. J. Comput. Syst. Sci. 72(4), 648–659 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Struct. Algorithms 1(4), 447–460 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: SODA 2012, pp. 1642–1660. SIAM (2012)Google Scholar
  12. 12.
    Frank, A.: Connections in Combinatorial Optimization. Oxford Lecture Series in Mathematics and Its Applications. OUP Oxford, Oxford (2011)zbMATHGoogle Scholar
  13. 13.
    Gąsieniec, L.: On efficient gossiping in radio networks. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 2–14. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  14. 14.
    Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks. Distrib. Comput. 19(4), 289–300 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: STACS 2011, vol. 9, pp. 57–68 (2011)Google Scholar
  16. 16.
    Grigni, M., Peleg, D.: Tight bounds on minimum broadcast networks. SIAM J. Discret. Math. 4(2), 207–222 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hajnal, A., Milner, E.C., Szemerédi, E.: A cure for the telephone disease. Canad. Math. Bull 15(3), 447–450 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Iglesias, J., Rajaraman, R., Ravi, R., Sundaram, R.: Rumors across radio, wireless, telephone. In: FSTTCS, pp. 517–528 (2015)Google Scholar
  19. 19.
    Iglesias, J., Rajaraman, R., Ravi, R., Sundaram, R.: Plane gossip: Approximating rumor spread in planar graphs. CoRR, abs/1612.01492 (2016)Google Scholar
  20. 20.
    Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: FOCS 2000, Washington, DC, USA, pp. 565–574. IEEE (2000)Google Scholar
  21. 21.
    Karp, R.M., Leighton, F.T., Rivest, R.L., Thompson, C.D., Vazirani, U.V., Vazirani, V.V.: Global wire routing in two-dimensional arrays. Algorithmica 2(1), 113–129 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kortsarz, G., Peleg, D.: Approximation algorithms for minimum-time broadcast. SIAM J. Discret. Math. 8(3), 401–427 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology radio networks. Distrib. Comput. 19(3), 185–195 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Acad. Sci. Hung. 28, 129–138 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Manne, F., Wang, S., Xin, Q.: Faster radio broadcast in planar graphs. In: WONS, pp. 9–13 (2008)Google Scholar
  27. 27.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge International Series on Parallel Computation. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  28. 28.
    Nikzad, A., Ravi, R.: Sending secrets swiftly: approximation algorithms for generalized multicast problems. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 568–607. Springer, Heidelberg (2014). Google Scholar
  29. 29.
    Proskurowski, A.: Minimum broadcast trees. IEEE Trans. Comput. 30(5), 363–366 (1981)CrossRefGoogle Scholar
  30. 30.
    Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time. In: FOCS, pp. 202–213. IEEE (1994)Google Scholar
  31. 31.
    Ravi, R.: Matching based augmentations for approximating connectivity problems. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 13–24. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  32. 32.
    Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51(6), 993–1024 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tijdeman, R.: On a telephone problem. Nieuw Archief voor Wiskunde 3(19), 188–192 (1971)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Northeastern UniversityBostonUSA

Personalised recommendations