When is Red-Blue Nonblocker Fixed-Parameter Tractable?

  • Serge Gaspers
  • Joachim Gudmundsson
  • Michael Horton
  • Stefan Rümmele
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10807)

Abstract

In the Red-Blue Nonblocker problem, the input is a bipartite graph \(G=(R \uplus B, E)\) and an integer k, and the question is whether one can select at least k vertices from R so that every vertex in B has a neighbor in R that was not selected. While the problem is W[1]-complete for parameter k, a related problem, Nonblocker, is FPT for parameter k. In the Nonblocker problem, we are given a graph H and an integer k, and the question is whether one can select at least k vertices so that every selected vertex has a neighbor that was not selected. There is also a simple reduction from Nonblocker to Red-Blue Nonblocker, creating two copies of the vertex set and adding an edge between two vertices in different copies if they correspond to the same vertex or to adjacent vertices. We give FPT algorithms for Red-Blue Nonblocker instances that are the result of this transformation – we call these instances symmetric. This is not achieved by playing back the entire transformation, since this problem is NP-complete, but by a kernelization argument that is inspired by playing back the transformation only for certain well-structured parts of the instance. We also give an FPT algorithm for almost symmetric instances, where we assume the symmetry relation is part of the input.

Next, we augment the parameter by \(\ell = \left| B \right| /\left| R \right| \). Somewhat surprisingly, Red-Blue Nonblocker is W[1]-hard for the parameter \(k+\ell \), but becomes FPT if no vertex in B has degree 1. The FPT algorithm relies on a structural argument where we show that when |R| is large with respect to k and \(\ell \), we can greedily compute a red-blue nonblocker of size at least k. The same results also hold if we augment the parameter by \(d_R\) instead of \(\ell \), where \(d_R\) is the average degree of the vertices in R.

Notes

Acknowledgments

Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship (FT140100048). This work received support under the ARC’s Discovery Projects funding scheme (DP150101134).

References

  1. 1.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for DOMINATING SET and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002).  https://doi.org/10.1007/s00453-001-0116-5 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cairns, G., Mendan, S.: Symmetric bipartite graphs and graphs with loops. Discrete Math. Theor. Comput. Sci. 17(1), 97–102 (2015). http://dmtcs.episciences.org/2119 MathSciNetMATHGoogle Scholar
  3. 3.
    Dehne, F., Fellows, M., Fernau, H., Prieto, E., Rosamond, F.: nonblocker: parameterized algorithmics for minimum dominating set. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 237–245. Springer, Heidelberg (2006).  https://doi.org/10.1007/11611257_21 CrossRefGoogle Scholar
  4. 4.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995).  https://doi.org/10.1016/0304-3975(94)00097-3 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-1-4612-0515-9 CrossRefMATHGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-1-4471-5559-1 CrossRefMATHGoogle Scholar
  7. 7.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009).  https://doi.org/10.1145/1552285.1552286 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30559-0_21 CrossRefGoogle Scholar
  9. 9.
    Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete Algorithms 4(2), 209–214 (2006).  https://doi.org/10.1016/j.jda.2005.03.002 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997).  https://doi.org/10.1007/BF02523693 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28050-4_4 CrossRefGoogle Scholar
  12. 12.
    Kanj, I.A., Xia, G.: When is weighted satisfiability FPT? In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 451–462. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40104-6_39 CrossRefGoogle Scholar
  13. 13.
    Lubiw, A.: Some NP-complete problems similar to graph isomorphism. SIAM J. Comput. 10(1), 11–21 (1981).  https://doi.org/10.1137/0210002 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    McCuaig, W., Shepherd, F.B.: Domination in graphs with minimum degree two. J. Graph Theory 13(6), 749–762 (1989).  https://doi.org/10.1002/jgt.3190130610 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ore, O.: Theory of Graphs. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (1962)CrossRefMATHGoogle Scholar
  16. 16.
    Turán, P.: On an extremal problem in graph theory. Matematikai és Fizikai Lapok 48, 436–452 (1941). In HungarianGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UNSWSydneyAustralia
  2. 2.Data61, CSIROCanberraAustralia
  3. 3.University of SydneySydneyAustralia

Personalised recommendations