Compact Self-Stabilizing Leader Election for General Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10807)

Abstract

We present a self-stabilizing leader election algorithm for general networks, with space-complexity \(O(\log \varDelta +\log \log n)\) bits per node in n-node networks with maximum degree \(\varDelta \). This space complexity is sub-logarithmic in n as long as \(\varDelta = n^{o(1)}\). The best space-complexity known so far for general networks was \(O(\log n)\) bits per node, and algorithms with sub-logarithmic space-complexities were known for the ring only. To our knowledge, our algorithm is the first algorithm for self-stabilizing leader election to break the \(\varOmega (\log n)\) bound for silent algorithms in general networks. Breaking this bound was obtained via the design of a (non-silent) self-stabilizing algorithm using sophisticated tools such as solving the distance-2 coloring problem in a silent self-stabilizing manner, with space-complexity \(O(\log \varDelta +\log \log n)\) bits per node. Solving this latter coloring problem allows us to implement a sub-logarithmic encoding of spanning trees — storing the IDs of the neighbors requires \(\varOmega (\log n)\) bits per node, while we encode spanning trees using \(O(\log \varDelta +\log \log n)\) bits per node. Moreover, we show how to construct such compactly encoded spanning trees without relying on variables encoding distances or number of nodes, as these two types of variables would also require \(\varOmega (\log n)\) bits per node.

References

  1. 1.
    Adamek, J., Nesterenko, M., Tixeuil, S.: Evaluating practical tolerance properties of stabilizing programs through simulation: the case of propagation of information with feedback. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 126–132. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33536-5_13 CrossRefGoogle Scholar
  2. 2.
    Afek, Y., Bremler-Barr, A.: Self-stabilizing unidirectional network algorithms by power supply. Chicago J. Theor. Comput. Sci. (1998)Google Scholar
  3. 3.
    Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for general networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 15–28. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-54099-7_2 CrossRefGoogle Scholar
  4. 4.
    Arora, A., Gouda, M.G.: Distributed reset. IEEE Trans. Comput. 43(9), 1026–1038 (1994)CrossRefMATHGoogle Scholar
  5. 5.
    Awerbuch, B., Ostrovsky, R.: Memory-efficient and self-stabilizing network reset. In: PODC, pp. 254–263. ACM (1994)Google Scholar
  6. 6.
    Blair, J.R.S., Manne, F.: An efficient self-stabilizing distance-2 coloring algorithm. Theor. Comput. Sci. 444, 28–39 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Blin, L., Boubekeur, F., Dubois, S.: A self-stabilizing memory efficient algorithm for the minimum diameter spanning tree under an omnipotent daemon. In: IPDPS 2015, pp. 1065–1074 (2015)Google Scholar
  8. 8.
    Blin, L., Fraigniaud, P.: Space-optimal time-efficient silent self-stabilizing constructions of constrained spanning trees. In: Proceedings of ICDCS 2015, pp. 589–598 (2015)Google Scholar
  9. 9.
    Blin, L., Potop-Butucaru, M., Rovedakis, S.: A super-stabilizing log(n)log(n)-approximation algorithm for dynamic steiner trees. Theor. Comput. Sci. 500, 90–112 (2013)CrossRefMATHGoogle Scholar
  10. 10.
    Blin, L., Tixeuil, S.: Compact deterministic self-stabilizing leader election on a ring: the exponential advantage of being talkative. Distrib. Comput. 1–28 (2017).  https://doi.org/10.1007/s00446-017-0294-2
  11. 11.
    Blin, L., Tixeuil, S.: Compact self-stabilizing leader election for arbitrary networks. Technical report 1702.07605, ArXiv eprint, Febrary 2017Google Scholar
  12. 12.
    Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing spanning trees. Inf. Process. Lett. 39(3), 147–151 (1991)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Inf. Process. Lett. 49(6), 297–301 (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revisited. J. Aerosp. Comput. Inf. Commun. (JACIC) 3(10), 498–514 (2006)CrossRefMATHGoogle Scholar
  15. 15.
    Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)MATHGoogle Scholar
  16. 16.
    Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization. Acta Inf. 36(6), 447–462 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. Distrib. Comput. 7(1), 3–16 (1993)CrossRefMATHGoogle Scholar
  18. 18.
    Dubois, S., Tixeuil, S.: A taxonomy of daemons in self-stabilization. Technical report 1110.0334, ArXiv eprint, October 2011Google Scholar
  19. 19.
    Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)CrossRefMATHGoogle Scholar
  20. 20.
    Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under unfair scheduler. In: Sakellariou, R., Gurd, J., Freeman, L., Keane, J. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44681-8_67 CrossRefGoogle Scholar
  21. 21.
    Herman, T., Pemmaraju, S.V.: Error-detecting codes and fault-containing self-stabilization. Inf. Process. Lett. 73(1–2), 41–46 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27820-7_6 CrossRefGoogle Scholar
  23. 23.
    Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal matching algorithm under distributed daemon without global identifiers. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 195–212. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49259-9_17 CrossRefGoogle Scholar
  24. 24.
    Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal matching algorithm under distributed daemon for arbitrary networks. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 93–108. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69084-1_7 CrossRefGoogle Scholar
  25. 25.
    Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verification, computation, and fault detection of an MST. In: Proceedings of PODC 2011, pp. 311–320. ACM, New York (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sorbonne Universités, CNRS, Université d’Evry-Val-d’EssonneParisFrance
  2. 2.Sorbonne Universités, CNRSParisFrance

Personalised recommendations