Advertisement

Partitioning Orthogonal Histograms into Rectangular Boxes

  • Therese Biedl
  • Martin Derka
  • Veronika Irvine
  • Anna Lubiw
  • Debajyoti Mondal
  • Alexi Turcotte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10807)

Abstract

The problem of partitioning an orthogonal polyhedron into a minimum number of boxes was shown to be NP-hard in 1991, but no approximability result is known except for a 4-approximation algorithm for 3D-histograms. In this paper we broaden the understanding of the 3D-histogram partitioning problem. We prove that partitioning a 3D-histogram into a minimum number of boxes is NP-hard, even for histograms of height two. This settles an open question posed by Floderus et al. We then show the problem to be APX-hard for histograms of height four. On the positive side, we give polynomial-time algorithms to compute optimal or approximate box partitions for some restricted but interesting classes of polyhedra and 3D-histograms.

Notes

Acknowledgements

This work was done as part of the Algorithms Problem Session at the University of Waterloo. We thank the other participants for valuable discussions. Research of T.B. and A.L. supported by NSERC, M.D. supported by Vanier CGS, M.D. and D.M. supported by an NSERC PDF.

References

  1. 1.
    Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret. Comput. Sci. 237(1–2), 123–134 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barrera-Cruz, F., Biedl, T.C., Derka, M., Kiazyk, S., Lubiw, A., Vosoughpour, H.: Turning orthogonally convex polyhedra into orthoballs. In: Proceedings of CCCG (2014)Google Scholar
  3. 3.
    Dielissen, V.J., Kaldewaij, A.: Rectangular partition is polynomial in two dimensions but NP-complete in three. Inf. Process. Lett. 38(1), 1–6 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Durocher, S., Mehrabi, S.: Computing conforming partitions of orthogonal polygons with minimum stabbing number. Theor. Comput. Sci. 689, 157–168 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eppstein, D.: Graph-theoretic solutions to computational geometry problems. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 1–16. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11409-0_1 CrossRefGoogle Scholar
  6. 6.
    Eppstein, D., Mumford, E.: Steinitz theorems for simple orthogonal polyhedra. J. Comput. Geom. 5(1), 179–244 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ferrari, L., Sankar, P.V., Sklansky, J.: Minimal rectangular partitions of digitized blobs. Comput. Vis. Graph. Image Process. 28(1), 58–71 (1984)CrossRefzbMATHGoogle Scholar
  8. 8.
    Floderus, P., Jansson, J., Levcopoulos, C., Lingas, A., Sledneu, D.: 3D rectangulations and geometric matrix multiplication. Algorithmica (2016, in press)Google Scholar
  9. 9.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Keil, M., Snoeyink, J.: On the time bound for convex decomposition of simple polygons. Int. J. Comput. Geom. Appl. 12(03), 181–192 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lingas, A., Pinter, R., Rivest, R., Shamir, A.: Minimum edge length partitioning of rectilinear polygons. In: Proceedings of the Annual Allerton Conference on Communication, Control, and Computing, vol. 10, pp. 53–63 (1982)Google Scholar
  12. 12.
    Lipski, W., Lodi, E., Luccio, F., Mugnai, C., Pagli, L.: On two-dimensional data organization II. Fundam. Informaticae 2, 245–260 (1979)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lipski, W.: Finding a Manhattan path and related problems. Networks 13(3), 399–409 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ohtsuki, T.: Minimum dissection of rectilinear regions. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1210–1213 (1982)Google Scholar
  15. 15.
    O’Rourke, J., Supowit, K.J.: Some NP-hard polygon decomposition problems. IEEE Trans. Inf. Theory 29(2), 181–189 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    O’Rourke, J., Tewari, G.: The structure of optimal partitions of orthogonal polygons into fat rectangles. Comput. Geom. 28(1), 49–71 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ. Carol. 15(2), 307–309 (1974)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Uehara, R.: NP-complete problems on a 3-connected cubic planar graph and their applications. Technical report TWCU-M-0004, Tokyo Woman’s Christian University (1996)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations