Skip to main content

Biosorption of Dye and Heavy Metal Pollutants by Fungal Biomass: A Sustainable Approach

  • Chapter
  • First Online:
Book cover Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Dye and heavy metal pollutants present in the aquatic and terrestrial ecosystem are hazardous to the environment as well as the human health due to their toxicity even at the lower concentration. A significant volume of dye and heavy metals released in industrial effluents, i.e., textile, tannery, electroplating, mines, and dyes, are polluting the environment in an inorganic or organic form. Several strategies have been applied for the removal of dyes and to detoxify heavy metals using the techniques, viz., landfill, incineration, solvent extraction, recycling, filtration, evaporation, and chemical precipitation. However the average yield, high-cost, toxic by-product and the production of secondary environment pollutants limit their application. Biosorption is an alternative approach for the bioremediation of the dyes and heavy metals from the environment using microbial biomass either live or dead. Biosorption of dyes and heavy metals by using potential fungal biomass is more feasible compared to the bacteria and yeast due to efficient capability of dye and heavy metal absorption, intracellular metal immobilization, bioaccumulation, and presence of the enzymes that helps in conversion of metals into their oxides. Fungal spp., i.e., Aspergillus, Trichoderma, Verticillium, Fusarium, and Penicillium, are well known for their accessibility as biosorbent. Biosorption mechanism involved two different modes for the uptake of dyes and heavy metals from the environment which are fungal cell wall structure and cell metabolism. Various physiochemical parameters play important role in the biosorption process, i.e., pH, temperature, biosorption rate, initial concentration of dye/heavy metal, metal speciation, dye/heavy metal solubility and form, binding site of the metal, and contact time. Fungal biomass concentration, cell wall composition, extracellular product formation, biomass dosage, and dissolved oxygen are some of the environmental factors that influence dye and heavy metal sorption efficiency of the fungal biomass during the process. Chemisorption, adsorption-coupled reduction process, ion exchange resins, metal precipitation, and electrostatic interaction between pollutants and fungal biomass are the key components for the biosorption process through fungal biomass. Equilibrium isotherm equations are used to describe the relationship between dyes or metal ions and biosorbent using different models to obtain experimental adsorption data. Two-parameter models Langmuir, Freundlich, Temkin, Dubinin- Radushkevich, and Flory- Huggins and three-parameter models Sips, Khan, Toth, Redlich- Peterson, and Radke-Prausnitz provide details about adsorbent’s surface properties, affinities, and adsorption dynamics. Metal recovered from the fungal biomass reduces the need of mining and extraction/purification cost. Regeneration of the fungal biomass enhances the biosorption capacity after a number of cycles. Biosorption can be emerged as cost-effective and nontoxic and as green approach for the removal and recovery of dyes and heavy metals from industrial effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghani NT, El-Chaghaby GA (2014) Biosorption for metal ions removal from aqueous solutions: a review of recent studies. IJLRST:2278–5299

    Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ahmad MF, Haydar S, Quraishi TA (2013) Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int Biodeterior Biodegrad 83:119–128

    Article  CAS  Google Scholar 

  • Akar T, Divriklioglu M (2010) Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: batch and dynamic flow mode studies. Bioresour Technol 101:7271–7277

    Article  CAS  PubMed  Google Scholar 

  • Akar T, Arslan S, Akar ST (2013) Utilization of Thamnidium elegans fungal culture in environmental cleanup: a reactive dye biosorption study. Ecol Eng 58:363–370

    Article  Google Scholar 

  • Aksu Z, Kilic NK, Ertugrul S, Donmez G (2007) Inhibitory effects of chromium(VI) and Remazol Black B on chromium(VI) and dyestuff removals by Trametes versicolor. Enzym Microb Technol 40:1167–1174

    Article  CAS  Google Scholar 

  • Asfaram A, Ghaedi M, Ghezelbash GR, Dil EA, Tyagi I, Agarwal S, Gupta VK (2016) Biosorption of malachite green by novel biosorbent Yarrowia lipolytica isf7: application of response surface methodology. J Mol Liq 214:249–258

    Article  CAS  Google Scholar 

  • Ata A, Nalcaci OO, Ovez B (2012) Macro algae Gracilaria verrucosa as a biosorbent: a study of sorption mechanisms. Algal Res 1:194–204

    Article  Google Scholar 

  • Baccar R, Blanquez P, Bouzid J, Feki M, Attiya H, Sarra M (2011) Decolorization of a tannery dye: from fungal screening to bioreactor application. Biochem Eng J 56:84–189

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2009) Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass. J Hazard Mater 165:670–676

    Article  CAS  PubMed  Google Scholar 

  • Chander M, Arora DS, Bath HK (2004) Biodecolourisation of some industrial dyes by white-rot fungi. J Ind Microbiol Biotechnol 31:94–97

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Ting ASY (2015) Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. J Environ Manag 150:274–280

    Article  CAS  Google Scholar 

  • Chowdhury S, Chakraborty S, Saha P (2011) Biosorption of basic green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids Surf B Biointerfaces 84:520–527

    Article  CAS  PubMed  Google Scholar 

  • Corso CR, Almeida ACM (2009) Bioremediation of dyes in textile effluents by Aspergillus oryzae. Microb Ecol 57:384–390

    Article  CAS  PubMed  Google Scholar 

  • Daassi MT, Nasri M, Rodriguez-Couto S (2013) Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi. J Environ Manag 129:324–332

    Article  CAS  Google Scholar 

  • Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3(3):195–199

    Google Scholar 

  • Errasqun EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • Faryal R, Sultan A, Tahir F, Ahmed S, Hameed A (2007) Biosorption of lead by indigenous fungal strains. Pak J Bot 39(2):615–622

    Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Viraraghavan T (2002) Removal of Congo red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7:239–247

    Article  CAS  Google Scholar 

  • Gadd GM (2008) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Gibert O, Pablo J, Cortina JL, Ayora C (2005) Municipal compost-based mixture for acid mine drainage bioremediation: metal retention mechanisms. Appl Geochem 20:1648–1657

    Article  CAS  Google Scholar 

  • Goyal A, Sanghi R, Misra AK, Shukla JB (2014) Modeling and analysis of the removal of an organic pollutant from a water body using fungi. Appl Math Model 38:4863–4871

    Article  Google Scholar 

  • Gunatilake S (2015) Methods of removing heavy metals from industrial wastewater. JMESS 1:12–18

    Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453

    Article  CAS  Google Scholar 

  • He X, Du M, Li H, Zhou T (2016) Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane. Int J Biol Macromol 82:174–181

    Article  CAS  PubMed  Google Scholar 

  • Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366

    Article  CAS  Google Scholar 

  • Huanga J, Liua D, Lub J, Wanga H, Weia X, Liua J (2016) Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: kinetics, capacity and mechanism studies. Colloids Surf A Physicochem Eng Asp 492:242–248

    Article  CAS  Google Scholar 

  • Iqbal M, Saeed A (2007) Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium. Process Biochem 42:1160–1164

    Article  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Jasinska A, Rozalska S, Bernat P, Paraszkiewicz K, Dlugonski J (2012) Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. Int Biodeterior Biodegrad 73(2012):33–40

    Article  CAS  Google Scholar 

  • Javanbakht V, Zilouei H, Karimi K (2011) Lead biosorption by different morphologies of fungus Mucor indicus. Int Biodeterior Biodegrad 65:294–300

    Article  CAS  Google Scholar 

  • Kabbout R, Taha S (2014) Biodecolorization of textile dye effluent by biosorption on fungal biomass materials. Phys Procedia 55:437–444

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1997) Biosorption of heavy metals on Aspergillus niger: effect of pretreatment. Bioresour Technol 63:109–113

    Article  Google Scholar 

  • Kaushik P, Malik A (2010) Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes. Colloids Surf B Biointerfaces 81:321–328

    Article  CAS  PubMed  Google Scholar 

  • Khataee A, Vafaei F, Jannatkhah M (2013) Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies. Int Biodeterior Biodegrad 83:33–40

    Article  CAS  Google Scholar 

  • Kim EJ, Park S, Hong HY, Choi YE, Yang JW (2011) Biosorption of chromium (Cr(III)/Cr(VI)) on the residual microalga Nannochloris oculata after lipid extraction for biodiesel production. Bioresour Technol 102:11155–11160

    Article  CAS  PubMed  Google Scholar 

  • Kristanti RA, Zubir MMFA, Hadibarata T (2016) Biotransformation studies of cresol red by Absidia spinosa M15. J Environ Manag 172:107–111

    Article  CAS  Google Scholar 

  • Kuhar F, Papinutti L (2013) Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum. J Environ Manag 124:1–7

    Article  CAS  Google Scholar 

  • Lalnunhlimi S, Krishnaswamy V (2016) Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Braz J Microbiol 47:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laszlo JA (1994) Removing acid dyes from textile wastewater using biomass for decolorization. Am Dyest Rep 83(8):17–21

    CAS  Google Scholar 

  • Leitao AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madani A, Chergui A, Selatnia A (2015) Biosorption of Fe+3 and Mn+2 ions from aqueous solution by a Pleurotus mutilus fungal biomass. J Chem Pharm Res 7(7):19–26

    CAS  Google Scholar 

  • Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521

    Article  CAS  PubMed  Google Scholar 

  • Mohsenzadeh F, Shahrokhi F (2014) Biological removing of cadmium from contaminated media by fungal biomass of Trichoderma species. Iranian J Environ Health Sci Eng 12:102

    Article  CAS  Google Scholar 

  • Nongmaithem N, Roy A, Bhattacharya PM (2016) Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Braz J Microbiol 47:305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SJ (2016) Review on biosorption of dyes by fungi. IJIRSET 5(1):2347–6710

    Google Scholar 

  • Patel R, Suresh S (2008) Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour Technol 99:51–58

    Article  CAS  PubMed  Google Scholar 

  • Priac A, Morin-Crini N, Gavoille CDS, Bradu C, Lagarrigue C, Torri G, Winterton P, Crini G (2014) Alkylphenol and alkylphenol polyethoxylates in water and wastewater: a review of options for their elimination. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.05.011

  • Pundir R, Chary GHVC, Dastidar MG (2016) Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp. Water Resour Res. https://doi.org/10.1016/j.wri.2016.05.001

  • Rahman Z, Singh VP (2016) Assessment of heavy metal contamination and Hg-resistant bacteria in surface water from different regions of Delhi, India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.09.018

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254:2959–2972

    Article  CAS  Google Scholar 

  • Sanghi R, Sankararamakrishnan N, Dave BC (2009) Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions. J Hazard Mater 169:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Malaviya P (2016) Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng 91:419–425

    Article  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    Article  CAS  Google Scholar 

  • Siddiquee S, Rovina K, Al Azad S, Naher L, Suryanil S, Chaikaew P (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7:6

    Article  CAS  Google Scholar 

  • Smitha T, Santhi T, Prasad AL, Manonmani S (2017) Cucumis sativus used as adsorbent for the removal of dyes from aqueous solution. Arab J Chem 10:S244–S251

    Article  CAS  Google Scholar 

  • Solis M, Solis A, Perez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748

    Article  CAS  Google Scholar 

  • Srivastava S, Thakur IS (2006) Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol Biochem 38:1904–1911

    Article  CAS  Google Scholar 

  • Tahir U, Yasmin A, Khan UH (2016) Phytoremediation: potential flora for synthetic dyestuff metabolism. JKSUS 28:119–130

    Google Scholar 

  • Tan CY, Li G, Lu XQ, Chen ZL (2010) Biosorption of basic orange using dried A. filiculoides. Ecol Eng 36:1333–1340

    Article  Google Scholar 

  • Tan LC, Nancharaiah YV, Hullebusch EDV, Lens (2016) Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 34:886–907

    Article  CAS  PubMed  Google Scholar 

  • Tastan BE, Ertugrul S, Donmez G (2009) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101:870–876

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Williamson PR (2017) Mercury contamination in Southern New England coastal fisheries and dietary habits of recreational anglers and their families: implications to human health and issuance of consumption advisories. Marine Poll Bull 114:144–156

    Article  CAS  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Vitor V, Corso CR (2008) Decolorization of textile dye by Candida albicans isolated from industrial effluents. J Ind Microbiol Biotechnol 35:1353–1357

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Chu Y, Wu F, Zhao Z, Xu X (2017) Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. Int Biodeterior Biodegrad 117:236–244

    Article  CAS  Google Scholar 

  • Yang Y, Jin D, Wang G, Wang S, Jia X, Zhao Y (2011) Competitive biosorption of Acid Blue 25 and Acid Red 337 onto unmodified and CDAB-modified biomass of Aspergillus oryzae. Bioresour Technol 102:7429–7436

    Article  CAS  PubMed  Google Scholar 

  • Yousefi J, Shahram S, Zadeh N (2015) The effect of contact time and temperature on biosorption of heavy metals from aqueous solution. Int J Rev Life Sci 5(2):1406–1411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meena, H., Busi, S. (2018). Biosorption of Dye and Heavy Metal Pollutants by Fungal Biomass: A Sustainable Approach. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-77386-5_10

Download citation

Publish with us

Policies and ethics