Skip to main content

Visual-Inertial RGB-D SLAM for Mobile Augmented Reality

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10736))

Included in the following conference series:

Abstract

This paper presents a practical framework for occlusion-aware augmented reality application using visual-inertial RGB-D SLAM. First, an efficient visual SLAM framework with map merging based relocalization is introduced. When the pose estimation fails, a new environment map is generated. Then, a map merging is performed to merge the current and previous environment maps if a loop closure is detected. The framework is then integrated with the inertial information to solve the missing environment map problem. Camera pose is approximated using the angular velocity and translational acceleration value when the pose estimation fails. Experimental results show that the proposed method can perform well in the presence of missing pose. Finally, an occlusion-aware augmented reality application is built over the SLAM framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunetto, N., Salti, S., Fioraio, N., Cavallari, T., Stefano, L.D.: Fusion of inertial and visual measurements for RGB-D SLAM on mobile devices. In: Proceedings of IEEE International Conference on Computer Vision Workshops, pp. 148–156 (2015)

    Google Scholar 

  2. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  3. Fioraio, N., Di Stefano, L.: SlamDunk: affordable real-time RGB-D SLAM. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 401–414. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_28

    Chapter  Google Scholar 

  4. Galvez-Lopez, D., Tardos, J.D.: Real-time loop detection with bags of binary words. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 51–58 (2011)

    Google Scholar 

  5. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)

    Article  Google Scholar 

  6. Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In: Proceedings of IEEE International Conference on Intelligent Robotics and Systems, pp. 2100–2106 (2013)

    Google Scholar 

  7. Klein, G., Murray, D.: Improving the agility of keyframe-based SLAM. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 802–815. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_59

    Chapter  Google Scholar 

  8. Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2969–2976 (2011)

    Google Scholar 

  9. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visualinertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015)

    Article  Google Scholar 

  10. Mahony, R., Hamel, T., Pflimlin, J.M.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 53(5), 1203–1217 (2008)

    Article  MathSciNet  Google Scholar 

  11. Marroquim, R., Kraus, M., RCavalcanti, P.: Efficient point-based rendering using image reconstruction. In: Proceedings of Eurographgics Symposium on Point-Based Graphics, pp. 101–108 (2007)

    Google Scholar 

  12. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  13. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2320–2327 (2011)

    Google Scholar 

  14. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2161–2168 (2006)

    Google Scholar 

  15. Servant, F., Houlier, P., Marchand, E.: Improving monocular plane-based SLAM with inertial measures. In: Proceedings of International Conference on Intelligent Robots and Systems, pp. 3810–3815 (2010)

    Google Scholar 

  16. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  17. Sünderhauf, N., Protzel, P.: Towards a robust back-end for pose graph SLAM. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1254–1261 (2012)

    Google Scholar 

  18. Tedaldi, D., Pretto, A., Menegatti, E.: A robust and easy to implement method for IMU calibration without external equipments. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3042–3049 (2014)

    Google Scholar 

  19. Tiefenbacher, P., Schulze, T., Rigoll, G.: Off-the-shelf sensor integration for mono-SLAM on smart devices. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 15–20 (2015)

    Google Scholar 

Download references

Acknowledgement

This work was supported by SK Telecom. This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (2017-0-00142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Williem et al. (2018). Visual-Inertial RGB-D SLAM for Mobile Augmented Reality. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10736. Springer, Cham. https://doi.org/10.1007/978-3-319-77383-4_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77383-4_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77382-7

  • Online ISBN: 978-3-319-77383-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics