Skip to main content

Mass Wasting: An Overview

  • Chapter
  • First Online:
Landslides: Theory, Practice and Modelling

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 50))

Abstract

Mass wasting is a natural phenomenon by which rock, soil and/or debris move downwards due to the action of gravity. It describes all the processes that act continuously with varied intensity on all type of slopes to lower the ground surface. The mass wasting process is controlled by the interaction of geological agents and processes with the geo-materials. The degree and type of movements depend upon a few aspects of geology, environment, geomorphology, hydrology, and some additional environmental stress factors, including biotic factors. It is more active in hilly regions like Himalayas, Western Ghats, Alps, and some other extensive mountain chains of the world. Sometimes it becomes disastrous to lives, property and economy. This chapter gives an overview of mass wasting processes and its classification. Some widely used mass movement classification schemes have been documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burda J, Zizka L, Dohnal J (2011) Monitoring of recent mass movement activity in anthropogenic slopes of the Kruˇsn’eHory Mountains (Czech Republic). Nat Haz Ear Syst Sci 11:1463–1473

    Article  Google Scholar 

  2. ElverhØi A, Blasio FVD, Butt FA et al (2002) Submarine mass wasting on glacially-influenced continental slopes: processes and dynamics. In: Dowdeswell, JA, Cofaigh C (eds) Influenced sedimentation on high latitude continental margins. Geological Society of London, Special publication, vol 203, pp 73–87

    Google Scholar 

  3. Bolt BA (1975) Landslide hazard. Geological Hazard, Springer, New York, p 150

    Google Scholar 

  4. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Unesco, Paris

    Google Scholar 

  5. Brusden D (1984) Mudslides. In: Brusden D, Prior D (eds) Slope instability. Wiley, Chichester, pp 363–418

    Google Scholar 

  6. Crozier M (1986) Landslides-causes, consequences and environment. Croom Helm Ltd, London, pp 0.7097–0.7099

    Google Scholar 

  7. Hutchinson JN (1988) Mass movement. In: Fairbridge R (ed) The Encycl of Geomorp. Reinold, pp 688–695

    Google Scholar 

  8. Cruden D (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43:27–29

    Article  Google Scholar 

  9. Cruden DM, Varnes DJ (1996) Landslide types and processes. Special report, transportation research board. Nat Acad Sci 247:36–75

    Google Scholar 

  10. Shroder JF, Finkel RC, Kamp U (2011) The role of mass movements on landscape evolution in central Karakoram: discussion and speculation. Quat Intern 236(1–2):34–47

    Article  Google Scholar 

  11. Schuster RL, Fleming RW (1986) Economic losses and fatalities due to landslides. Bul Am Assoc Eng Geol 23(1):11–28

    Google Scholar 

  12. Swanston DN, Schuster RL (1989) Long-term landslide hazard mitigation programs: structure and experience from other countries. Bul Am Assoc Eng Geol 26(1):109–113

    Google Scholar 

  13. Glade T (1998) Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environ Geol 35:2–3

    Article  Google Scholar 

  14. Rotaru A, Oajdea D, Raileanu P (2007) Analysis of the landslide movements. Int J Geol 1(3):71–79

    Google Scholar 

  15. Scheidegger AE (1984) A review of recent work on mass movements on slopes and on rock falls. Ear Sci Rev 21(4):225–249

    Article  Google Scholar 

  16. Keller EA (2000) Environmental geology, 8th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  17. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  18. Zaki A, Chai HK, Razak HA, Shiotani T (2014) Monitoring and evaluating the stability of soil slopes: a review on various available methods and feasibility of acoustic emission technique. Comp Ren Geosci 346:223–232

    Article  Google Scholar 

  19. Savvaidis PD (2003) Existing landslide monitoring system and techniques. School of rural and surveying engineering. The Aristotle University of Thessaloniki, pp 242–258

    Google Scholar 

  20. Pardeshi SD, Autade SE, Pardeshi SS (2013) Landslide hazard assessment: recent trends and techniques. Springer Publ 2:523

    Article  Google Scholar 

  21. Jagtap KR, Aware SP (2015) Landslide pre-warning system based on wireless sensor network using zigbee-A review. Int conf on techn for sustain-Eng infor tech, manage and the environ, Faridabad, India. ISBN: 978-81-931039-7-5

    Google Scholar 

  22. Highland LM, Bobrowsky P (2008) The landslide handbook-A guide to understanding landslides, vol 1325. U.S. Geological Survey Circular, Reston. 129p

    Google Scholar 

  23. Baltzer A (1875) Uberbergstürze in den Alpen. Verlag der Schabelitz’schenbuchhandlung (C. Schmidt), Zurich, 50p

    Google Scholar 

  24. Stini J (1910) Die Muren. Verlag der Wagner’shen Universitätsbuchhandlung, Innsbruck (Debris flows, English translation by M. Jakob and N. Skermer, 1997, EBA Engineering Consultants, Vancouver, Canada, 106p

    Google Scholar 

  25. Sharpe CFS (1938) Landslides and related phenomena. Columbia University Press, New York. 1370p

    Google Scholar 

  26. Savage CN (1951) Mass-wasting, classification and damage in Ohio. Ohio J Sci 51(6):299–308

    Google Scholar 

  27. Varnes DJ (1954) Landslide types and processes. In: Eckel EB (ed) Landslides and engineering practice, special report 28. Highway Research Board. National Academy of Science, Washington, DC, pp 20–47

    Google Scholar 

  28. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: transportation research board. National Academy of Science, Washington, DC, pp 11–33

    Google Scholar 

  29. Hutchinson JN (1968) Mass movement. In: Fairbridge RW (ed) Encyc of geomorph. Reinhold Publishers, New York, pp 688–695

    Chapter  Google Scholar 

  30. Sassa K (1999) Introduction. In: Sassa K (ed) Landslides of the world. Kyoto University Press, Kyoto, pp 3–18

    Google Scholar 

  31. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  32. International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory (WP/WLI) (1991) A suggested method for a landslide summary. Bull Int Assoc Eng Geol 43:101–110

    Article  Google Scholar 

  33. International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory (WP/WLI) (1993) A suggested method for describing the activity of a landslide. Bull Int Assoc Eng Geol 47:53–57

    Article  Google Scholar 

  34. Carson MA, Kirkby MJ (1972) Hillslope forms and processes. Cambridge University Press, Cambridge

    Google Scholar 

  35. Hungr O, Evans SG, Bovis M et al (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci VII:221–238

    Article  Google Scholar 

  36. Goodman RE (1989) Introduction to rock mechanics. Wiley, New York

    Google Scholar 

  37. Eberhardt E, Preisig G, Giscchig V (2016) Progressive failure in deep-seated rockslides due to seasonal fluctuations in pore pressures and rock mass fatigue. In: Aversa et al (eds) Landslides and engineered slopes. Experience, theory and practice. Asso Geot Ital, Rome

    Google Scholar 

  38. Chang KT, Ge L, Lin H (2015) Slope creep behavior: observations and simulations. Eniron Ear Sci 73(1):275–287

    Article  Google Scholar 

  39. Rawat KT, Joshi V, Rawat BS et al (2011) Landslide movement monitoring using GPS technology: a case study of Bakthang landslide, Gangtok, East Sikkim, India. J Dev Agric Eco 3(5):194–200

    Google Scholar 

  40. Wangensteen B, Guðmundsson A, Eiken T et al (2006) Surface displacements and surface age estimates for creeping slope landforms in Northern and Eastern Iceland using digital photogrammetry. Geomorphology 80:59–79

    Article  Google Scholar 

  41. Terzaghi K (1950) Mechanisms of landslides. Geological Society of America, Berkley, pp 83–123

    Google Scholar 

  42. Calcaterra D, Parise M (2010) Weathering as a predisposing factor to slope movements: an introduction. Geological Society of London, London, Engineering Geology Special Publications 23:1–4

    Google Scholar 

  43. Jaboyedoff M, Baillifard F, Bardou E et al (2004) The effect of weathering on Alpine rock instability. Q J Eng Geol Hydrol 37:95–103

    Article  Google Scholar 

  44. Stoffel M, Tiranti D, Huggel C (2014) Climate change impacts on mass movements – case studies from the European Alps. Sci Tot Environ 493:1255–1266

    Article  Google Scholar 

  45. Popescu ME (1994) A suggested method for reporting landslide causes. Bull Int Assoc Eng Geol 50:71–74

    Article  Google Scholar 

  46. Fort M, Cossart E, Deline P et al (2009) Geomorphic impacts of large and rapid mass movements: a review. Geomorph Relief Proc Environ 1:47–63

    Google Scholar 

  47. Guzzetti F, Carrara A, Cardinali M et al (1999) Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31:181–216

    Article  Google Scholar 

  48. Wieczorek GF, Snyder JB (2009) Monitoring slope movements. Geol Soc Am:245–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, S.P., Siddique, T. (2019). Mass Wasting: An Overview. In: Pradhan, S., Vishal, V., Singh, T. (eds) Landslides: Theory, Practice and Modelling. Advances in Natural and Technological Hazards Research, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-77377-3_1

Download citation

Publish with us

Policies and ethics